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Solar energy generation is exponentially and globally increasing 
to meet energy needs, while economic barriers to its deploy-
ment are decreasing. Despite its growing penetration in the 

global marketplace, rarely discussed is an expansion of solar energy 
engineering principles beyond process and enterprise to account for 
both economic and ecological systems, including ecosystem goods 
and services1,2.















Techno-ecological synergy (TES) is a systems-based approach to 
sustainable development emphasizing synergistic outcomes across 
technological and ecological boundaries; first introduced by Bakshi 
and colleagues in 20151. Global sustainability challenges are inher-
ently coupled across human and natural systems3 and resource use 
on Earth exceeded regenerative capacity approximately since 19804. 
Thus, solar energy combined with TES may prove a promising solu-
tion for avoiding unintended consequences of a rapid renewable 
energy development on nature by mitigating global change-type 
problems5,6. Further, the Millennium Ecosystem Assessment, 2030 
Agenda for Sustainable Development7, and other industry-led ini-
tiatives8 provide a robust and timely justification for sustainable 
technologies, particularly solar energy, to be defined as ones includ-
ing both the supply and demand of ecosystem services, upon which 
all human activities depend.

Q2 Q3 Q4 Q5

Ecosystem goods and services are needed as inputs (demand) to 
support the solar energy life-cycle, beginning with the sourcing of 
raw materials for manufacturing (Fig. 1).

When TES is applied, demand is carefully measured, including 
the quantity of resources withdrawn from (e.g., water withdrawal, 
habitat loss) or materials released into (e.g., CO2 emissions, nutrient 
runoff) the environment. For example, systematic reviews of pub-
lished life cycle estimates demonstrate that solar technologies are 
more than an order of magnitude lower in greenhouse gas (GHG) 
emissions (16-73 gCO2-eq kWh-1)9,10 than all carbon-intensive 
energy systems (coal and natural gas: 413 – 1144 gCO2-eq kWh-1)11–13  
and similar to other renewable energy systems plus nuclear14.

In an open system, all industrial processes create order, thereby 
increasing entropy in the surrounding environment. When this 
entropic demand exceeds the capacity of an ecosystem to dissipate 
it, it manifests as industrial waste or environmental degradation 
(Fig. 1a)4. Demand imposed by solar energy development on eco-
systems, especially displacive, ground-mounted solar energy power 
plants can lead to environmental degradation. Displacive energy 
development is that which causes land-use or land-cover change 
and reduces the biophysical capacity or supply of ecosystem goods 
and services within a serviceshed. The adverse impacts of solar 
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The 


strategic engineering of solar energy technologies—from individual rooftop modules to large solar energy power plants—

can confer significant synergistic outcomes across industrial and ecological boundaries. Here, we propose techno-ecological 
synergy (TES), a framework for engineering mutually beneficial relationships between technological and ecological systems, as 
an approach to augment the sustainability of solar energy across a diverse suite of recipient environments, including land, food, 
water, and built-up systems. We provide a conceptual model and framework to describe 16 TESs of solar energy and character-
ize 20 potential techno-ecological synergistic outcomes of their use. For each solar energy TES, we also introduce metrics and 
illustrative assessments to demonstrate techno-ecological potential across multiple dimensions. The numerous applications of 
TES to solar energy technologies are unique among energy systems and represent a powerful frontier in sustainable engineer-
ing to minimize unintended consequences on nature associated with a rapid energy transition.
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energy development on biodiversity, water, soil, air quality, cultural 
values, and land-use and land-cover change have been of increasing 
interest in both local-scale, power plant-specific development deci-

sions and at larger spatial scales for long-term planning of renew-
able energy landscapes (e.g., California Desert Renewable Energy 
Conservation Plan)2.

Electricity

Solar energy without TES

Solar energy with TES

Products

Products

Adverse impacts are incurred on ecosystems through 
excessive pollution and environmental degradation.

Ecosystem goods and services are needed as inputs 
(demand) to support the solar energy life-cycle. Without 
TES, accounting of demand is incomplete or missing.

Electricity and other 
technological outcomes

Earth system 
inputs

Earth system 
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Inputs

Inputs

The supply of ecosystem goods and services are 
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demand, resulting in further environmental degradation.

Ecosystems are protected and adverse ecological 
impacts are counterbalanced with robust investments 

of capital and management (such as, ecosystem 
restoration) in ways supported by scientific consensus.
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degradation

Ecological
outcomes

Inputs

Waste

Inputs
Goods and

services
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services
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Solar energy development with TES produces beneficial 
technological and ecological outcomes (such as, 
land sparing).

Solar energy life-cycle demand on ecosystem goods and 
services are accounted for across entire supply chain.

Adverse impacts incurred on ecosystems are avoided. 
Or, alternatively, impacts are minimized and monitored 
over ecologically appropriate spatiotemporal scales.

Technological  system

Ecological system

Waste

Fig. 1 | Conceptual model demonstrating how techno-ecological synergies (TESs) of solar energy produce mutually beneficial technological and 
ecological synergistic outcomes that serve to mitigate global change-type challenges. Without TES (a), the solar energy development life-cycle proceeds 
without complete consideration of the supply and demand of ecosystem goods and services, resulting in excess environmental degradation, exacerbated 
by lack of inputs via capital and management. In contrast, solar energy development with TES (b) begins with a complete accounting of the supply 
and demand of ecosystem goods and services across appropriate spatiotemporal scales, produces electricity and other technological outcomes while 
simultaneously optimizing favorable ecological outcomes, which are augmented by the investment of capital into and management of ecosystems  
(e.g., restoration activities). Overall, solar energy with TES results in a beneficial change in the direction and magnitude of flows occurring between the 
‘natural system’ (e.g., desert, forest) and the ‘technological system’ (i.e., solar energy development) relative to solar energy without TES.
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When solar energy is developed with TESs, pollution and environ-
mental degradation are avoided or minimized, reducing waste flows. 
Concomitantly, beneficial ecological outcomes are produced along-
side technological outcomes (Fig. 1b). For example, a community-
owned solar farm (Westmill Solar) in Wiltshire, United Kingdom 
(UK), is notable for the presence of outplanted native grasses and 
herbs under and around panels to provide pollinator habitat, a posi-
tive ecological outcome2. Moreover, the application of TES includes 
the counterbalance of unavoidable adverse impacts with robust 
investments of capital and management in ways supported by scien-
tific consensus and stakeholder participation across the appropriate 
knowledge system15,16. Such inputs serve to strengthen and further 
augment the beneficial ecological outcomes that solar energy TES 
produces and prevent delays in achieving renewable energy goals.

Industrial processes are also intrinsically dependent on the sup-
ply of ecosystem goods and services. Ecosystem service supply is 
the maximum potential of ecological function and biophysical ele-
ments in an ecosystem. For example, the sustainable generation of 
one megawatt hour (MWh) of solar energy at an emissions rate of 
48 gCO2-eq kWh-1 is contingent on the supply of regulating eco-
systems services to sequester approximately 48,000 g CO2-eq back 
into the environment14. Despite an emphasis on enumerating GHG 
emissions by life-cycle analysis and related methods, a diverse suite 
of mass and energy flows—including nitrogen, heat, water—under-
pin the supply of ecosystem goods and services. For example, the 
washing of photovoltaic (PV) solar energy panels to reduce soiling 
and wetting of disturbed soils to mitigate dust is dependent on the 
supply of water from sources like rivers, lakes, and aquifers within 
an ecosystem17. Enumeration of the supply of ecosystem goods and 
services includes an understanding of the complex feedbacks and 
linkages that regulate a given supply.

For all energy sources, the manner in which an energy system is 
sited, constructed, operated, and decommissioned can yield nega-
tive but also positive impacts on ecosystems. Thus, no individual 
technology or process can be sustainable, even renewable energy, 
without an accounting of its impact on not only the demand, but 
also the supply of ecosystem services at appropriate spatiotemporal 
scales3. Environmental impacts associated with energy transitions 
broadly can extend at time scales beyond 100 years and thus pose 
inter-generational ethical dilemmas that need equitable guardrails. 
Given its impact on environmental factors of import across spa-
tiotemporal dimensions3, the application of TES for solar energy 
development can play a powerful role in both local sustainability 
decisions and in the planning and realizing of decarbonization 
pathways for the Earth system, but these positive roles have received 
less attention.

Techno-Ecological Synergies of Solar Energy Framework
When applied to solar energy technologies, the outcome of TES 
produces both techno-centric products (e.g., PV module efficiency, 
grid reliability) as well as support for sustainable flows of ecosys-
tem goods and services (e.g., carbon sequestration and storage, 
water use efficiency, habitat for species) that may mitigate global 
environmental change1,18–20. We describe ecological systems as those 
intersecting with spheres of the Earth system, including the anthro-
posphere (e.g., food systems).

In this initial framework, we have identified 16 implementations 
of TES for solar energy technologies across four recipient systems: 
land, food, water, and built-up systems (Fig. 2). Recipient system in 
this context refers to an ecological or Earth system that predomi-
nately receives and/or supports the infrastructure associated with 
the solar energy TES. Together, these TESs encompass the potential 
for 20 unique synergistic outcomes that overlap structurally, when 
possible, with the environmental co-benefits of the Millennium 
Ecosystem Assessment21 and ecosystem services of the Economics 
of Ecosystems and Biodiversity22 initiative for valuation and value 

capture in decision-making. As global sustainability challenges—
including air pollution, food security, and water shortages—are 
interconnected across dimensions3, we characterize synergistic out-
comes according to 1) space (‘spatial incidence’), 2) time (‘temporal 
incidence’), and 3) ecological organizational level (from local- to 
global-scale).

Spatial incidence describes whether a techno-ecological syn-
ergistic outcome occurs in the same place as the site of energy 
generation. Some outcomes overlap with the site of generation 
(‘sympatric’), whereas certain outcomes are spatially separated from 
the site of solar energy generation (‘disjunct’). Temporal incidence 
describes how a techno-ecological outcome develops. An outcome 
may occur and be measured gradually or in stages (‘progressive’). In 
contrast, an outcome may occur and should be measured only once 
in time (‘non-repeating’). Lastly, each techno-ecological synergistic 
outcome embodies a level of ecological organization that represents 
the maximum ecological scale in which an ecological outcome con-
tributes goods and services (also known as its ‘serviceshed’). If the 
outcome is technological, this scale refers to the maximum scale at 
which the outcome is consumed, monetized, or valued by a particu-
lar beneficiary.

In the following paragraphs, we show how the build-out of TESs 
of solar energy provides resilience to coupled human and natural 
systems. Specifically, we describe 20 potential techno-ecological 
synergistic outcomes across 16 solar energy TESs and discuss a 
selection of metrics and assessment methods to measure TES flows. 
We argue that the categorization and characterization of their syner-
gistic outcomes embodied within this conceptual model (Fig. 1) and 
framework (Fig. 2) holds promise as a powerful springboard for the 
integration of solar energy TESs into industry and society.

Optimizing Land Resources for TESs of Solar Energy
The diffuse and overlapping nature of land degradation and solar 
energy resources globally provide opportunities for land sparing in 
an era where land is an increasingly scarce resource23. Notably, we 
found that degraded lands in the US comprise over 800,000 km2 
(approximately 2X the area of California [CA]; Table 1). Here, the 
most degraded sites (e.g., EPA Superfund sites) could produce over 
1.6 million GWh y-1 of potential PV solar energy (38.6% of total US 
consumption of electricity in 2015)24. Further, if degraded lands are 
targeted for solar energy infrastructure in lieu of land with greater 
embodied capacity for carbon sequestration (e.g., shrublands, prai-
ries), GHG and aerosol emissions associated with land-use and 
land-cover change will be reduced or eliminated. For example, if 
solar energy development leads to diminished extent of perennial 
plant communities, hazardous GHG and dust emissions, as well as 
and soil borne pathogens, may increase25,26. Following TES prin-
ciples, risks to human health and wildlife are quantified and even 
avoided completely.

Co-locating solar energy infrastructure with other renew-
able energy infrastructure (e.g., wind turbines) is another TES. 
Co-location optimizes land-use efficiency (e.g., MW/km2 for mea-
suring installed capacity per area27, TWh y-1 for measuring gen-
eration per area5) and even more so when co-location happens on 
degraded lands (Fig. 2). Such hybrid renewable energy systems are 
particularly attractive if they mitigate problematic “duck curves” 
or are located in remote places where grid extension and fuel is 
costly—improving grid reliability (a technological synergistic out-
come) while reducing total life cycle costs28.

Degraded lands have potential to recoup, to some extent or fully, 
ecosystem goods and services (Table  1). Decision-support tools 
used to identify appropriate locations for siting renewable energy 
infrastructure can be designed to prioritize potential reversibility29.  
Thus, the use of degraded lands for siting solar energy can also 
confer positive ecological outcomes beyond those related to land 
sparing when habitat under, between, and surrounding solar energy 
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infrastructure is restored (i.e., a win-win-win scenario with 13 
potential outcomes).

Passive and active restoration activities are compatible with 
solar energy infrastructure and operation to support these syner-
gistic outcomes, and are scalable across political boundaries to sup-
port governance programs seeking to incentivize such activities30. 
Ecological outcomes of this TES include biological control (e.g., 
pest regulation), carbon sequestration and storage, erosion preven-
tion, habitat for species, maintenance of genetic diversity, and pol-
lination (Fig.  2). For example, in the UK, active management for 
wildlife across 11 solar energy power plants (on predominantly 
former grazing land), increased diversity and abundance of broad-
leaved plants, grasses, invertebrates, and birds, compared to control 
plots31. A recent study in the US identified 3,500 km2 of agricul-
tural land near existing and planned ground-mounted solar energy 
power plants that could benefit from nearby indigenous pollinator 
habitat32. Lastly, restoration actions may confer a positive feedback 

to PV module efficiency. For example, the outplanting of native veg-
etation under panels in lieu of gravel underlayment may increase 
transpiration (water vapor as a byproduct of photosynthesis), 
which cools panels. This response would increase PV module effi-
ciency, a technological synergistic outcome, which may also extend  
panel lifespan19,33.

Contrastingly, studies have shown that using land for solar 
energy development can, under certain circumstances, be a net 
negative for the local ecosystem, landscape sustainability, and global 
climate6,29,34,35. DeMarco et al. (2014)29 found the use of olive groves 
and non-irrigated arable land, classified as environmentally “suit-
able” within a regulatory framework for solar energy development, 
would actually reduce the potential for net avoided GHG emissions 
conferred by solar energy development by reducing the net CO2 
sequestered by these land-cover types. Further, the authors found 
that 66% of installations were sited on unsuitable land including 
century-old olive groves, which were noted by the authors for their 

Solar energy techno–ecological synergy

Spatial incidence

Temporal incidence

Progressive Non-repeating

Largest ecological scale

Dimensions

Recipient
system (no. of

outcomes)

Potential techno–ecological synergistic outcomes

(1) Utilization of degraded and contaminated
 land for solar energy generation

 
 

Land (8)

Land (13)

Land (6)

Food (8)

Food (10)

Food (8)

Food (9)

Water (11)

Water (6)

Built-Up (10)

Built-Up (10)

Built-Up (7)

(2) Solar energy generation coupled with
 ecological restoration and/or pollinator habitat 

(3) Co-located/hybrid renewable 
 energy systems 

(4) Center-pivot agriculture systems with 
 solar corners 

(5) Agrivoltaic systems (PV co-located with  
 crop production) 

(6) Rangevoltaic systems and intensive 
 animalsolar energy systems 

(7) Solar-powered drip irrigation systems 

(8) Floatovoltaics and solar water canals 

(9) Solar energy desalinization and 
 water treatment 

(10) Utilization of surfaces within the built
 environment for solar energy (excl. rooftops) 

(11) Rooftop surfaces for solar energy 

(12) Solar heat harvesting for cooling and 
 hot water

(13) Solar energy and energy storage

(14) PV on transportation vehicles 

(15) Solar cookers, drying systems, and
 passive solar greenhouses 

(16) PV integrated with rainwater harvesting 

Sympatric  Disjunct

Local/
ecosystem

Regional

Continental

Global

Landscape/
seascape

  

Various (10)

Various (7)

Various (7)

Various (7)

Air pollution reduction

Animal welfare

Biological control

Carbon sequestration
and storage

Climate regulation

Energy equity
and/or security

Erosion prevention
and maintenance of
soil fertility

Fuel Diversity

Food system
resilience

Grid reliability
and/or resilience

Habitat for species

Heating and cooling
efficiency

Human health
and well-being

Land sparing

Maintenance of
genetic diversity

Pollination

PV module efficiency

Urban heat
island reduction

Water-use efficiency

Water quality

Fig. 2 | Framework for techno-ecological synergies (TESs) of solar energy development. Each solar energy TES is characterized by its recipient system(s) 
(i.e., land, food, water, built-up system) and potential technological (black icons) and ecological (colored icons) synergistic outcomes. Shown also 
are three dimensions of techno-ecological synergistic outcomes: special incidence, temporal incidence, and largest ecological scale. Spatial incidence 
describes whether a techno-ecological synergistic outcome occurs in the same place as the site of energy generation. Some outcomes overlap with the 
site of generation (‘sympatric’), whereas certain outcomes are spatially separated from the site of solar energy generation (‘disjunct’). Temporal incidence 
describes how a techno-ecological outcome develops. An outcome may occur and be measured gradually or in stages (‘progressive’). In contrast, an 
outcome may occur and should be measured only once in time (‘non-repeating’). Lastly, each techno-ecological synergistic outcome embodies a level 
of ecological organization that represents the maximum ecological scale in which an ecological outcome contributes goods and services (also known as 
its ‘serviceshed’). If the outcome is technological, this scale refers to the maximum scale at which the outcome is consumed, monetized, or valued by a 
particular beneficiary.
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significant cultural value within the Apulia region of Italy. Thus, 
land sparing practices may also allay competition for limited land 
resources needed for agriculture6, wildlife conservation36, tour-
ism, historically significant areas, and cultural values/rights held by 
indigenous/tribal groups, including their viewsheds37.

Trade-offs commonly emerge for decision makers in the use of 
land for solar energy development; however, TESs can help guide 
development towards optimum landscape sustainability. Notably, 
the application of TES across land systems prioritizes the use of 
existing infrastructure in developed areas for renewable energy 
over the use of land with potential for net losses in ecosystem  
goods and services.

Integrating TESs of Solar Energy within Agricultural 
Systems
Agrivoltaic systems (AVS) are those within which both agricultural 
production (food or energy crops) and solar energy generation are 
co-occurring within the same land area. We identified ten potential  

techno-ecological outcomes of AVS, including land sparing, PV 
module efficiency, water use efficiency and water quality (for fur-
ther discussion on water and AVSs see Supplementary Box 1), and 
erosion prevention and the maintenance of soil fertility (Fig.  2). 
Such outcomes may enhance the microclimatic conditions suitable 
for crop production. AVSs can be implemented in either energy-
centric or agriculture-centric fashions, which can be proportionally 
customized according to needs and desired outcomes.

For example, a low-density PV installation may allow more inso-
lation through to the soil surface. This is an example of an agriculture- 
centric AVS, as there may be a lower efficiency or higher cost to 
the energy system on a per area basis, respectively, without sub-
stantially altering agricultural productivity. Conversely, an energy- 
centric AVS might comprise shade-tolerant crops planted under 
a PV array of maximal density. Additionally, elevated PV installa-
tions, tall enough for farming equipment to pass under, can accom-
modate taller crops (Fig.  3a). Thus, AVSs offer economization of 
land use driven by location- and commodity specific priorities19.

Table 1 | Degraded land types in the united States and their geographic potential for the development of solar energy with techno-
ecological outcomes

Relative potential for 
restoration of ecosystem  
goods and services

Degraded Land Type Description Estimated Area for Potential Solar 
Energy Development (km2)

LOW

HIGH

EPA Sites (e.g., Superfund, 
Brownfield)

Hazardous waste sites; previously used 
for industrial or commercial purposes, 
including possible presence of environmental 
contaminants

47,0701

Landfill Used for disposal of waste beneath soil 
surface; releases leachate and landfill gas

1,637-6,5922

Abandoned Mine Land Areas once utilized for mining activities; 
possible presence of environmental 
contaminants

11,3801

Contaminated Agricultural 
Land

Land contaminated from cropland and  
grazing practices (e.g., metal, saline-sodic, 
fertilizer contamination)

28,9603

Abandoned Agricultural 
Land

Areas once used for agricultural productivity 682,5791

Right-of-Way Land along transportation and distribution 
infrastructure (e.g., roads, rail, transmission)

55,9351

Total 827,561 – 832,516

We performed a synthetic review of the literature to identify six total sub-types of degraded land in the US and their total respective area. Details on methodologies and sources are included as footnotes. 
Each row includes a qualitative color-based metric for relative potential restoration of ecosystem goods and services, degraded land type, a brief description, and geographic potential in area (km2). For all 
degraded land types, local-scale ecological characteristics, existing infrastructure, and potential risks may impact relative reversibility in unique ways. 1Milbrandt et al. (2014) Renewable energy potential 
on marginal lands in the United States. Renewable and Sustainable Energy Reviews 29: 473-481 2Estimate based on median area of ten landfills (eight counties) in California (0.86 km2), and scaled to 
estimates for number of capped and active landfills in the United States: low (1,908) and high (7,683). 3Estimate based on 20% contamination in irrigated croplands (144,800 km2) of United States from 
Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB International, and West TO, Marland G (2002) A synthesis of 
carbon sequestration, carbon emission, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems, and Environment 91: 217-232.
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The use of land for energy and agricultural production neces-
sitates novel metrics for valuation. The land equivalent ratio (LER) 
is a metric inclusive of yields and electricity generation (AVS crop 
yields / regular crop yield + AVS electricity yield / regular AVS 
yield), where LER > 1 is more effective spatially than separated 
crop and solar energy generation for the same area. A study of the 
LER of a durum wheat-producing AVS in Montpellier (France) 
found that the full and half density AVSs have LERs of 1.73 and 
1.3538. Modeling in India on an AVSs where PV was integrated 
with grapes grown on trellises showed a 15-fold increase in over-
all economic returns compared to conventional farming with no 
reduction in grape yields39. Another simulation study in North 
Italy revealed solar panels confer more favorable conditions for 
rainfed maize productivity (a C4 plant) than full light, and LERs  
were always >140.

Another possibility for purely additive solar energy in agricul-
tural landscapes and techno-ecological outcomes lies in the use of 
negative-space PV; specifically, the installation of PV arrays in the 
portions of fields that are unused for crop or pasture production. 
One option is to develop unused areas of land adjacent to existing 
crop/pasture fields with solar energy outplanted with low-grow-
ing, pollinator friendly plants (Fig. 2, Fig. 3b). Another prominent 
example of negative space is in the corners of fields where center-
pivot irrigation is used (for further discussion see Supplementary 
Box 2)18. In such irrigation configurations, where r is the maximum 
radius of the pivot on a square plot, an area of roughly (4-π)r2 is 
often left un-irrigated (Fig. 3c). Here, farmers may plant drought-
tolerant crops or may purchase higher-cost center-pivot systems 
with retractable arms that reach into corners. A different possibility, 
however, is to utilize these corners for PV solar energy, which con-
fers eight TES outcomes (Fig. 2).

In some locations, PV arrays may have a positive effect on 
crop yields through shading, as well as reduced evapotranspira-
tion from plants and soils41, as evidenced by existing agroforestry, 
shrub-intercropping42,43, and shade cloth-based agricultural prac-
tices. Indeed, the production of shade-tolerant ornamental and 
horticultural plants necessitates such conditions and for all plants, 
once light saturation is reached, any additional light energy is in 
excess as photosynthetic rates asymptote. This is true particularly 
for C3 crops that have lower light saturation points. In other loca-
tions, yields maybe slightly reduced but by less than the reduction 
in solar radiation44,45.

Other key TES outcomes of AVSs are increased energy produc-
tion due to aerosol reduction (important for human health and 
well-being) through increased soil moisture and vegetation cover. 
This may also support increased water use efficiency, another cou-
pled outcome. Reduction of aerosols is especially important in arid-
lands where water is scarce and where solar panel robotic washing 
technologies may be cost-prohibitive46. Further, water use efficiency 
may be increased by 1) repurposing the water used for cleaning 
panels for plant watering, and 2) shading from the panels, which 
may reduce evapotranspiration (Fig. 3a). Lastly, reductions in water 
use and/or consumption may reduce detrimental effects of abstrac-
tion on aquatic ecosystems and CO2 emission and cost implications 
associated with groundwater overuse.

In both high-yielding modernized agricultural production sys-
tems and smallholdings far from the grid (often in developing com-
munities), solar-powered irrigation systems are another appealing 
TES, with nine potential outcomes (Fig. 2). These systems may off-
set increasing costs associated with greater electricity use on farms, 
supporting food system resilience and enabling greater water use 
efficiency and water quality. In Spain, energy consumption (per unit 
area; m3 ha-1) increased by 657% from 1950 to 2007 due to changes 
in farm-based water management activities. This is largely associ-
ated with technological advances in pumping and moving water 
that have dramatically increased water use efficiency (but Jevons 

a

c

b

d

Fig. 3 | Techno-ecological synergies of solar energy and examples of 
techno-ecological synergistic outcomes. (a) Panel washing water inputs 
(left) on a photovoltaic (PV) installation are also inputs into agricultural 
productivity below, known as an agrivoltaic system leading to increased 
water-use efficiency, erosion prevention and maintenance of soil 
fertility, land sparing, and other beneficial techno-ecological outcomes 
(Chiba Prefecture, Japan, photo: Akira Nagashima). Compare this to 
panel washing (right) on an installation where water inputs are directed 
towards graded, compacted, and barren soil in California’s Great  
Central Valley, which does not optimize techno-ecological synergistic 
outcomes, like PV module efficiency of food system resilience  
(Manteca, CA, photo: RR Hernandez; for further discussion on water  
use efficiency in agrivoltaics, see Supplementary Box 1). (b) In the  
US states of Minnesota (left) and Vermont (right), land adjacent to 
croplands is developed with PV solar energy (1.3 MW, fixed tilt and  
1.1 MW, single-axis tracking, respectively) and outplanted with low-
growing flowering plants for native and managed pollinators that help 
increase agricultural yields, reduce management (i.e., mowing) costs, 
and confer the opportunity to produce honey and other honey-based 
commodities (photos: Fresh Energy, Inc.). (c) Center-pivot agrivoltaic 
systems occupy the corners of crop/pasture fields for solar energy 
generation but also produce the techno-ecological synergistic outcomes 
of air pollution reduction, land sparing, food system resilience, and  
others in Dexter, New Mexico (photo: © 2018 Google; Google Earth;  
for further discussion on center-pivot agrivoltaics see Supplementary 
Box 2). (d) Floatovoltaic installations can contribute to local- and 
regional–scale agricultural resource needs while simultaneously 
enhancing water quality and water-use efficiency, a beneficial ecological 
outcome, as demonstrated by this floatovoltaic system in Napa, 
California (left, photo: Far Niente Winery) and this floatovoltaic system 
under construction atop a water treatment facility in Walden, Colorado 
(right, photo: Dennis Schroeder, NREL; for further discussion on floating 
PV systems see Supplementary Box 3).

NATuRE SuSTAINABILITy | www.nature.com/natsustain

http://www.nature.com/natsustain


A B

DispatchDate:  28.05.2019  · ProofNo: 309, p.7

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

PersPectiveNature SuStaiNability

paradox can exist). For example, USDA Farm Ranch and Irrigation 
Survey of 2013 surveyed 1,592 US farms (>$1,000 in products pro-
duced/sold) that used solar-powered pumps spanning 28,104 acres.

Additionally, PV-based systems may also provide access to 
energy where none existed previously. If coupled with efficient drip 
irrigation (as such systems often are, e.g., 47% of surface irrigation 
in Spain was drip in 201847), PV-based systems can further augment 
water use efficiency gains (Fig. 2). In industrialized contexts where 
water is priced, this TES can reduce operational costs. In develop-
ing economies, landscapes where water would otherwise be hauled 
and spread by hand, these energy and water savings translate into 
labor savings, with important consequences for school attendance, 
women’s welfare and equity, hunger, poverty, and entrepreneurial-
ism. A pilot project in northern Benin, for example, showed sig-
nificant economic, nutritional, human capital, and investment 
benefits of community-scale solar-powered irrigation projects48,49. 
Specifically, households using this TES produced, sold, and con-
sumed more micronutrient crops than before, with potential lasting 
consequences for health and human capital accumulation.

Rangevoltaic systems—we define here for the first time as solar 
energy generation co-located with domestic livestock activities and 
associated infrastructure, notably grazing areas—as well as inten-
sive-animal solar energy systems (e.g., feedlots, dairy farms), can 
provide numerous potential techno-ecological outcomes (n=8), 
notably enhanced animal welfare and food system resilience 
(Fig. 2). There is both political will and an economic case for this 
TES: The Ministry of Agriculture, Forestry and Fisheries of Japan 
updated the Agricultural Land Act in April 2013 allowing the instal-
lation of PV systems on crop/pastureland and guidance within the 
UK purports PV installations are grazed by sheep and poultry50. 
Stocking densities of sheep similar to conventional grasslands may 
be attainable and poultry stocking densities up to 80% of that for 
conventional free-range systems, are suggested thus representing 
substantial land sparing. Further, there are additional benefits both 
for livestock, such as the light and shade areas. Light and adequate 
shade (to reduce heat stress) are a desirable environment condition 
recognized the Freedom Foods Certification Scheme in the UK and 
such favorable conditions improve both commodity (e.g., milk) 
yields and quality. Additional benefits arise for energy production 
through negating the need for active and costly vegetation manage-
ment (e.g., mowing, herbicide application)50.

Water and Electricity Mix with TESs of Solar Energy Across 
Water Systems
Floatovoltaics are PV modules attached to pontoons that float on 
water and are typically fixed to a banking limiting lateral movement 
(for further discussion see Supplementary Box 3)51. Similarly, pho-
tovoltaics can be installed on fixed mounting systems over water 
canals, as was done across 19K km in Gujarat, India. To date, floato-
volatics exist across the world (e.g., USA, Israel, China, India, the 
UK, and Japan) and are particularly appealing for developers where 
land is more valuable for uses beyond electricity generation, as has 
been observed, for example, in designated wine grape-growing 
regions (Fig. 2)52.

Floatovoltaics have eleven potential techno-ecological out-
comes and are capable of reducing water evaporation (Fig.  3d), 
may reduce algae growth, and can be integrated over hydroelec-
tric reservoirs. Reduced evaporative loss is of particular value in 
aridland environments, covering approximately 40% of Earth’s 
terrestrial surface and where water is less abundant, costlier, and 
evaporation rates are high. For example, Gujarat’s canal solar 
power project (1 MW) is noted for preventing evaporation of 34M 
gallons of water annually. Moreover, panel shading may improve 
water quality by limiting light penetration resulting in lower 
water temperatures and dissolved oxygen limiting algae growth. 
Martinez-Alvarez et  al. (2010)53 found that covering agricultural 

water reservoirs deters 1% of incoming solar radiation, decreasing 
algae growth and the need to filter reservoir intakes by 90%. Lastly, 
floatovoltaics increase PV module efficiency by lowering module 
temperature52. In CA (US), floatovoltaics were 2.8 °C cooler than 
ground-mounted PV, improving efficiency by 11–12.5% compared 
to ground-mounted installations54.

Solar PV and thermal technologies can also be used to drive 
water treatment and desalination technologies to augment water 
supplies in arid or water-stressed regions (Fig. 2)44,55 A recent study 
found that solar-powered desalination was “highly applicable” 
for 30 countries that are experiencing water stress but also have a 
favorable solar resource, with other regions in other countries also  
showing suitability56.

Designing TES Outcomes with Solar Energy across 
Built-up Systems
An integral TES outcome of siting of solar energy infrastructure 
within the built environment—developed places where humans 
predominantly live and work—is that it does not require additional 
land. And yet, ten unique TES outcomes are possible from this TES 
(Fig. 2). On rooftops, solar PV panels have insulating effects on the 
building envelope that can confer energy savings and improve health 
and human comfort. In cities, albedos commonly average 0.15 to 
0.22. Here, solar energy modules can increase albedo (increasingly 
so as their efficiency rate increases) and reduce total sensible flux 
(~50%), especially relative to dark (e.g., asphalt, membrane) or rock 
ballasted roofs. Taha (2013)57 modeled a high-density deployment 
of roof-mounted PV panels in the Los Angeles Basin and found 
no adverse impacts on air temperature or on the urban heat island 
(UHI) and predicted up to 0.2°C decrease in air temperatures with 
higher efficiency panels. In Paris, France, when simulating the effect 
of solar PV and thermal panels (for hot water) on rooftops, Masson 
et al. (2014)58 show that during wintertime, both solar panel types 
slightly increase the need for domestic heating due to shading of 
the roof (3%). In summer, however, the thermal solar deployment 
simulation showed a 12% decrease in the energy needed for air con-
ditioning and a reduced UHI effect by 0.2°C during the day and up 
to 0.3°C at night.

The roof-shading and UHI cooling properties of rooftop solar 
PV can further benefit urban areas. For instance, an increased solar 
panel deployment simulation for the city of Paris, France revealed 
4% fewer people to be affected by heat stress for more than 12 hours 
per day during the 2003 August heat wave (Fig. 1)58. Given that more 
extreme summer heat stress is leading to an increasing number of 
heat-related, premature mortality events (e.g. 11,000 deaths in the 
Moscow heat wave in 2010), even modest improvements in the UHI 
effect through solar panel deployment are practicable59. Also, where 
heat stress is associated with entering parked automobiles, shad-
ing parking lots with PV could reduce exposure to heat stress and 
aggressive driving resulting from discomfort60.

In addition to energy generation, solar thermally driven cool-
ing and heating systems (operative also with district systems, an 
enabling technology) can harvest solar radiation to produce maxi-
mal air conditioning at the peak time of day when the cooling is 
most needed. Heat harvesting is useful for various building applica-
tions including solar hot water heaters, which China is deploying at 
scale with 71% of the global total 472 GWth solar thermal capacity 
installed within its borders in 2017. In the agricultural sector, solar 
drying has shown potential to replace fossil fuel-powered desicca-
tion equipment, through either directly exposing food produce, tea 
leaves, or spices to the sun’s radiation or through indirect means, 
such as fans, to transfer heated air from a collector area into drying 
chambers45. The application of solar drying technologies in the food 
production process provides farmers greater control of storage con-
ditions that reduce postharvest food losses, improve food quality, 
and therefore support food system resilience (Fig. 2)61.
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Solar Energy TES “Sundries” Across Multiple Systems
Four solar energy TESs can be integrated into a variety of envi-
ronments across land, food, water, and built-up systems with 7-10 
potential techno-ecological synergistic outcomes (Fig. 2).

Energy Storage and Solar Energy—A Resilient Duo. As extreme 
weather events increase in severity and frequency, energy storage 
combined with solar energy offer unique TES outcomes, mark-
edly as these weather events can often precipitate electric grid 
outages at regional scales. Historically, grid resilience to outages 
has most commonly been fortified with backup fossil fuel-based 
(e.g., diesel) generators, prone to complications arising from 
finite and/or long-distance supply chains and protracted periods 
of non-use. Notably, Alvarez (2017) described the aftermath of 
Hurricane Maria in Puerto Rico as “an epidemic of broken genera-
tors.”62. For a complete discussion on storage and solar energy see 
Supplementary Box 4a.

Solar-Based Transportation Across Land-, Air-, and Seascapes. 
Physical and economic limitations still prevent industrial imple-
mentation of on-board solar for electric vehicles (EVs), but research 
and development on solar-powered vehicles is gaining momentum. 
The most economically viable and practical HEV system today 
involves charging plug-in HEVs at stationary PV solar installations, 
creating realizable synergistic outcomes for deployment of both 
technologies. For a complete discussion on ‘solarized’ transporta-
tion see Supplementary Box 4b.

Photovoltaic Rainwater Collection. PV panels may be fitted 
or integrated with gutters to collect rainwater, which can then be 
transported to store in tanks or rain barrels above or belowground, 
directed to a reservoir, or consumed immediately onsite in place of 
groundwater or municipal source. Such a configuration produces 
up to seven techno-ecological synergistic outcomes and can serve 
populations where there is limited potable drinking water (e.g., in a 
small agricultural field) or minimal rainfall. There are also energy 
savings associated with treating and pumping water or if used on 
high rise buildings it could also offset energy costs for lifting water 
to upper floors63. Comparable mechanisms of water harvesting have 
been used on many types of rooftops to supply water for house-
holds, landscapes, and farming uses.

Agricultural and Urban Solar Greenhouses. There is potential to 
incorporate PV arrays into greenhouses, to either provide electric-
ity required by greenhouse operations or to export power for other 
uses. Generating electricity from integrated PV panels potentially 
reduces energy costs in greenhouses, negates the need for a mains 
connection, and avoids the need for land. Benefits can be tailored to 
optimize any offset against potential reductions in yield, crop qual-
ity (e.g., nutritional value), and aesthetics due to reduced radiation 
penetration. For further discussion on solar greenhouses and solar 
energy integration see Supplementary Box 4.

Conclusion
Achieving a rapid transition from fossil fuels to renewable energy 
sources on planet Earth to support human activities, in a man-
ner benign to Earth’s life support systems, is arguably the grandest 
challenge facing civilization today64. The consequences of climate 
and other types of global environmental change are a cautionary 
flag against the extrapolation of past energy decisions. Our model 
(Fig.  1), framework (Fig.  2), and assessment (e.g., Table  1) serve 
to demonstrate that solar energy TESs are feasible across diverse 
recipient environments with outcomes that favor both technologi-
cal (e.g., PV module efficiency, grid reliability) as well as ecologi-
cal outcomes. Specifically, such ecological outcomes support the 
sustainable flows of ecosystem goods and services (e.g., carbon 

sequestration and storage, water use efficiency, habitat for species) 
to mitigate ecological overshoot.

In total, we found 16 solar energy TESs and 20 techno-ecolog-
ical synergistic outcomes. The number of potential beneficial out-
comes for individual TESs ranges from six to 13 with a median of 8, 
ranging from animal welfare to grid resilience to land sparing. The 
majority (80%) of synergistic outcomes occur in the same location 
(sympatric) as the energy generated thereby creating positive local-
scale incentives for TES solar energy development. The scale of eco-
logical outcomes extends from local to global scales. Solar energy 
embodies a technology that is perhaps uniquely diverse, modular, 
scalable; however, we encourage the consideration of TES for other 
low-carbon energy sources.

Importantly, however, a solar energy TES is characterized not 
only by producing these ecological outcomes but also by supple-
menting their numbers and magnitude through capital investments 
into and management of the ecosystems that the solar energy TES 
enterprise depends on and/or manifests waste into (Fig.  1b). As 
achieving negative emissions is not a panacea to reversing effects 
of global environmental change64, taken together, such actions may 
reduce climate change damages, which are relatively well-known, 
($417/tCO2

65) and mitigate other types of global change, the latter 
for which monetization of damages is less studied (e.g., biodiversity 
loss, food insecurity).

Despite increasing commitments to transition societies toward 
100% renewable energy, policies may be needed to embed solar 
energy TESs into the global economy. Such policies have begun to 
take form. For example, in 2016, grassroots environmental organi-
zations in the state of Minnesota (US) successfully advocated for 
legislation supporting the deployment of ground-mounted PV on 
over 1,600 hectares of land outplanted with native foraging habitat 
for bees, butterflies, and birds, equating to 2.4 million homes with 
6’ x 12’ pollinator gardens. The US EPA’s RE-Powering Program 
has facilitated the development of 186 RE-Powering sites, including 
brightfields (1,272 MW), leveraging investments in PV on contami-
nated lands, landfills, and mine sites.

Without deliberate and value-setting processes, decarbonization 
might proceed without consideration of potential TES outcomes, 
particularly as policy and regulatory discussions advance and 
expand globally. Thus, solar energy TESs may merit their own poli-
cies, incentives, and subsidies in addition to those already in place 
for developing larger solar energy installations (e.g., utility-scale PV 
solar energy). Additionally, these synergies could be considered in 
cost-benefit analyses of energy systems for the purposes of electric 
rate-making, resource planning, net metering, and other value-set-
ting processes that affect distributed solar markets (for a one-page 
‘Summary for Policy Makers’ see Supplementary Materials).
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