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ABSTRACT

As the solar energy industry grows, many hundreds of thousands of acres of land
will be transformed into solar panel facilities. With this large change in land use,
there is the opportunity to promote biodiversity and support pollinators by using
pollinator-friendly management practices at the solar facilities. This paper
explores the ecological and economic effects of a pollinator-friendly solar facility
compared to a turfgrass solar facility.

| hypothesized that a pollinator-friendly solar facility would be functionally
equivalent in pollinator support and overall insect diversity to a pollinator-friendly
non-solar field and that both sites would have far greater pollinator support and
insect diversity than a turfgrass solar field. To test this hypothesis, vegetation and
insect sampling were conducted and the resulting data were analyzed for
differences in vegetative and insect diversity and pollinator abundance at a
pollinator-friendly solar facility, a turfgrass solar facility, and a reference non-solar
pollinator-friendly field. The diversity analysis revealed that the pollinator-friendly
solar site was overall functionally equivalent to the non-solar pollinator-friendly
site and the turfgrass solar site had low insect and vegetative diversity, but high
insect abundance.

Photovoltaic solar panel energy production is negatively affected by high
temperatures. Therefore, to maximize energy production and promote
biodiversity native forbs may be incorporated into a solar facility landscape to
cool the solar panels by the cooling effect of transpiration and produce more
energy than a traditional turfgrass landscaped solar facility throughout the
growing season. This study tested that hypothesis by analyzing environmental
and vegetation data from two solar facilities, one with a turfgrass landscape and
one with a pollinator-friendly forb-dominated landscape. Irradiance, ambient
temperature, panel temperature, and percent forb ground cover were recorded
for a section of solar panels at each site throughout the 2021 growing season.
This data was used to create generalized linear models (GLMs) for predicting
panel temperature and humidity based on irradiance, ambient temperature, site,
and the interactions between each of them. The predictions made by the panel
temperature predicting model supported the hypothesis that the pollinator-friendly
landscape had a greater cooling effect than the turfgrass landscape under high
and medium irradiance conditions. But this cooling effect was not seen under low
irradiance conditions. This suggests that the negative effect of high temperatures
on energy output is only significant under high irradiance conditions. Overall, this
study supports the idea that pollinator-friendly landscapes could be more
economically viable, as pertaining to energy output, and more ecologically
beneficial compared to turfgrass. More research is necessary to further
investigate and test the patterns seen at only these two solar sites, but these
results are encouraging for the future widespread implementation of pollinator-
friendly management practices in solar facilities across the Mid-Atlantic.
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Chapter 1: Introduction

1.1 Background

Two of the biggest challenges the Earth is facing today are climate change and
decreasing biodiversity, the former being caused primarily by the burning of fossil fuels
for energy, and the latter by changes in land use such as deforestation for agriculture
(Pimm et al. 1995). The technological advancements needed to support sustainable
alternatives to a fossil fuel-based energy economy have been in development for many
years, but only recently have these advancements been implemented on a widespread
scale. For example, one of the most practical renewable energy sources in the U.S. is
solar power. The U.S. has committed to increasing solar energy generation through
aggressive energy portfolios that anticipate carbon-neutral energy production by 2050
(Blinken 2021, Horowitz 2021). As the solar energy industry grows to address climate
change by reducing our carbon footprint, the “ecological footprint” of solar energy
generation has been called into question, particularly concerning biodiversity losses
incurred by the construction and management of solar energy facilities (McDonald et al.
2009, Lovich and Ennen 2011, Hernandez et al. 2019, Weselek et al. 2019). The solar
energy industry is now seeking development, operation, and maintenance strategies

with the potential to address problems on both fronts (climate and biodiversity).

The solar energy industry includes thermal, fuel, and electrical energy (Tsao et
al. 2006). This study is focused on the production of photovoltaic (PV) electrical energy
in the Mid-Atlantic. Solar energy generation sufficient for regional distribution (i.e., utility-
scale solar energy; USSE) generally requires the construction of solar panels covering
large tracks of land over hundreds of acres in size (Moore-O’Leary et al. 2017, DeBerry
et al. 2019). In the eastern U.S., these facilities are most commonly sited in post-
agricultural landscapes, which are preferred because they require minimal grading for

site construction and no tree clearing (Macknick et al., 2013). To stabilize the soil at
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these sites, turfgrass is commonly planted under and around the solar panels, creating a
monoculture that requires regular mowing, reduces biodiversity, and limits the amount of
available habitat for native flora and fauna (Tiller 2013). However, alternative
landscaping strategies have the potential to turn solar facilities into habitats for wildlife
such as pollinators, while also performing other ecosystem services like erosion
prevention, flood abatement, and carbon sequestration (Blaydes et al., 2021; Hernandez
et al., 2014, 2019; Moore-O’Leary et al., 2017; Tsoutsos et al., 2005). Solar energy
facilities can be designed to accomplish these goals by using pollinator-friendly plants
rather than turfgrass or gravel (Macknick et al. 2013, Montag et al. 2016, Walston et al.

2018).

1.1.1 Virginia Pollinator-Smart Program

Recognizing the potential for solar facilities to provide habitat for wildlife and
increase biodiversity, the Virginia Department of Environmental Quality (DEQ) partnered
with the Virginia Department of Conservation and Recreation (DCR) to create the
“Virginia Pollinator-Smart Solar Industry”. This program was designed to equip solar
energy companies with strategies and incentives for converting solar facilities into
pollinator-friendly landscapes (DeBerry et al. 2019). Pollinator-friendly landscapes are
dominated by beneficial plants that provide food through nectar for native pollinators, as
well as habitat to support diverse insect communities (Seitz et al. 2020). In the Virginia
program, a “Pollinator-Smart” landscape achieves these objectives by planting and
maintaining a diverse vegetative community of beneficial flowering forbs, in and around
a solar installation in lieu of traditional turfgrass. Many other states across the US are in
the process of or have already created their own pollinator-friendly solar facility

programs (Terry et al. 2020).

1.1.2 Ecosystem services of pollinator-friendly solar facilities

2



Pollinator-friendly solar facilities, like those in Virginia’s Pollinator-Smart Program
as well as those of other states, are expected to increase ecosystem services as
compared to turfgrass solar facilities. Ecosystems services can be defined as properties
of ecosystems that generally benefit humans (Oliver et al., 2015). The pollinator-friendly

landscape should provide the following ecosystem services (Beatty et al. 2017):

Prevent erosion

e Sequester carbon
e Prevent flooding
e Support pollinators for crop pollination

e Support natural insect enemies of crop pests

In addition to the ecosystem services of pollination and crop pest suppression, the insect
community of a pollinator-friendly landscaped solar facility may also increase the overall
ecosystem function and biodiversity of that area. Ecosystems functions are the physical,
chemical, and biological attributes that contribute to the self-maintenance of an
ecosystem over time (Oliver et al. 2015), so functions can be thought of as the
ecological underpinning of services. Chapter 2 of this study is focused on answering the
question: Is a Pollinator-Smart landscape functionally equivalent to a natural landscape
counterpart with respect to pollinator support and insect diversity, and how does a
turfgrass landscape compare? To examine how a pollinator-friendly landscape affects
the ecosystem function of a solar facility, | measured the vegetative community diversity
and insect community taxonomic and functional diversity of the study sites described

below.

1.1.3 Economics of pollinator-friendly solar facilities



The widespread implementation of pollinator-friendly management plans on
USSE facilities across the Mid-Atlantic depends on those regimes being economically
viable compared to turfgrass management. There are many factors in the assessment of
economic viability of a pollinator-friendly solar site compared to a turfgrass solar site (in

order of implementation):

1. Preparation of land for planting (soil amendments, fertilizer, erosion and
sediment control cover crops, and grading)

2. Seeding costs

3. Maintenance costs (mowing and herbicide application)

4. Vegetation shading of solar panels, decreasing energy production

5. Vegetation’s effect on solar panel temperature and therefore energy production

(thermal buffering effect of transpiration)

The first three factors depend partially on the circumstances of each solar facility,
such as its former land use. But for most solar sites the estimated cost reductions in land
preparation and maintenance could outweigh the higher cost of pollinator-friendly seed
mixes compared to turfgrass seed mixes (Beatty et al., 2017; Hopwood et al., 2015;
Kuzovkina et al., 2016; Robin Ernst, Monarch Vegetation Services, pers. comm.). The
cost reduction in land preparation and maintenance of the pollinator-friendly landscape is
partially due to the hardy native plants not requiring the costly soil amendments
otherwise needed to promote turfgrass growth. Soil amendments also have the potential
to introduce foreign seeds and potentially promote invasive species growth (Hodkinson
and Thompson 1997). Native plants are known to outcompete non-native invasives
better than turfgrass and thus reduce the need for herbicide application (Alpert et al.
2000). Pollinator-friendly landscapes also require significantly less mowing than

turfgrass landscapes. Less frequent mowing saves money, and that cost reduction has



been found to outweigh the higher cost of pollinator-friendly seed mixes, compared to

turfgrass seed mixes, in as little as three years after planting (Tiller 2013).

The last two factors, panel shading and thermal buffering, have not been studied to
see which landscape (turfgrass or pollinator-friendly) is more cost-effective. The panel
shading factor can be mitigated by only planting vegetation with a maximum height less
than that of the panels in the panel area and/or by raising panel height (DeBerry et al.
2019). The effect of each landscape type on the thermal buffering of solar panels is the
focus of Chapter 3, which investigates the question: Does a pollinator-friendly solar
facility have higher energy production efficiency and a greater thermal buffering capacity

than a turfgrass solar facility?

1.2 Study Design

To investigate the question of thermal buffering, solar panel microclimate
research was conducted at a pollinator-friendly landscaped photovoltaic solar facility
(Cople Solar Site) and a
turfgrass landscaped
solar facility (Middlesex
Solar Site), both owned
and operated by Sun
Tribe Solar, a prominent
and fast-growing clean

energy company in the

Abg aypadbsay)

Mid-Atlantic region. To

investigate the

ecosystem function and .
Figure 1.1 Location map of study sites.

services question, insect




and vegetation surveys were conducted at Cople, Middlesex, and at a non-solar native
pollinator meadow created for conservation and recreation at Belle Isle State Park. Al
three sites are approximately five acres in size and are located in the northeastern
region of Virginia (Figure 1.1), and each has a similar landscape setting with the

surrounding area comprised of agricultural fields and forests with minimal development.

1.3 Site Descriptions

1.3.1 Cople Solar Site

The Cople Site, which  § Cople Elementary

is next to Cople Elementary

School in Westmoreland

o ———cP-TH

Panel Zone

County, Virginia, was built in
2019 and was the first solar
facility in Virginia to be Gold
Certified Pollinator-Smart, the
highest certification rank for
the program. The Cople Site

is made up of two different

Figure 1.2 Cople Site showing sampling transect layout (see Methods, Chapter 2). CP
means “Cople Panel” and CO means “Cople Open”. Numbers T1-T4 correspond to
individual transects.

management areas, the
Cople open area (CO), 2.02
acres, and the Cople panel zone (CP), 2.04 acres (Figure 1.2). Although these two areas
are co-located at the Cople Site, they are treated as separate sites in the diversity
analyses in order to analyze the effects of the different planting plans and management
strategies. Cople Site’s solar infrastructure is made up of 13 ground-mounted, fixed-tilt

PV solar panel rows spaced 14 ft apart and uses the Seraphin SEG-6MA-365WW



module and Canadian Solar CSI-66KTL-GS 2017-08 inverters (Taylor Brown, Sun Tribe

solar, pers. comm.).

Cople Management: CP and CO were each planted with a different seed mix to
accommodate the height of the panels in CP, while also incorporating taller native
vegetation into the solar facility in CO (VHB 2019). CP and CO are mown once in the
early winter and once in the spring each year. CP was also mown in August of 2021 to
prevent the vegetation from shading the panels. Herbicide spot treatment was also
applied following Integrated Vegetation Management (IVM) techniques at CP and CO in
August of 2020 and July of 2021, although herbicide management was more focused on

CP (Taylor Brown, Sun Tribe solar, pers. comm.).

1.3.2 Middlesex Solar Site

The Middlesex Site
(MS) is a solar facility in
Middlesex County, Virginia
that supplies power for
Middlesex Elementary
School and St. Clare Walker
Middle School. The

| ey
Middlesex Site was built in

M‘iddlesex
Elementary
School

2018 and prior to installation

was a turfgrass field used by . !
Figure 1.3 Middlesex Site (MS). See Figure 1.2 for an explanation of figure references.

the school. The Middlesex

facility is made up of two different enclosed solar panel areas. This study was conducted



on the enclosed solar panel area which was the most similar in size and shape to the
Cople Site (Figure 1.3). Vegetation and insect surveys were only conducted in the panel
zone of Middlesex due to the observed vegetative homogeneity of the panel zone and
open area. Middlesex’s solar infrastructure is made up of 14 ground-mounted, fixed-tilt
PV solar panel rows spaced 15 ft apart and uses the Mission Solar MSE34006 module
and Solectria (Yaskawa Solectria Solar) PVI 60TL 2-21-2017 inverters (Taylor Brown,

Sun Tribe solar, pers. comm.).

Middlesex Management: After installation, disturbed areas at the site were treated with
German millet (Setaria italica) to help reestablish the turfgrass vegetation in 2018.
Otherwise, the site was overseeded with a tall fescue cultivar (Schedonorus
arundinaceus) typical of post-construction site stabilization practices in the region. Since

installation, the site has been mown approximately every two weeks.

1.3.3 Belle Isle Native Meadow

The Belle Isle Site (Bl) is a pollinator-friendly meadow next to the Belle Isle State Park
Visitor's Center and is maintained by the Virginia Department of Conservation and
Recreation (DCR). This site was used for agriculture, mainly corn and soybeans, before

DCR purchased it in 1993.



The area of Belle Isle
State Park surrounding the
study site is made up of
primarily active agriculture
fields and hardwood forests.
The Belle Isle Site is also
near the Rappahannock
River, but our transects were
chosen to be an adequate
distance from the shore to
avoid shoreline vegetation
and river borne insects

(Figure 1.4).

Limits of Native
Pollinator Meadow

1

Belle Isle State Park
Visitor Center

Figure 1.4 Belle Isle Native Meadow (Bl). See Figure 1.2 for an explanation of figure
references.

Belle Isle Management: As Belle Isle State Park was being constructed prior to 2008,

the study site was taken out of active agriculture and converted to a warm-season

grassland. The Belle Isle site was planted first with grass-heavy seed mixes and then

pollinator-friendly seed mixes in the following years. The site’s continual resource

management efforts since 2008 include herbicide application to control invasive species,

as well as the use of prescribed fire on a three-year cycle (Katie Shepard, Belle Isle

State Park Manager, pers. comm.). Because of its longevity as a native meadow and

the active management over the past 13 years undertaken to maintain it, Bl was chosen

to serve as a reference site for the pollinator-friendly conditions at CP and CO.



Chapter 2: Comparing Insect and Vegetation Diversity Across Landscapes

2.1 Introduction

One negative environmental impact of particular importance for ground-mounted
solar facilities is the loss of biodiversity (Abbasi and Abbasi 2000, Tsoutsos et al. 2005,
Hernandez et al. 2014, Montag et al. 2016, Grodsky and Hernandez 2020). There have
been studies conducted on how solar facilities affect plant, bee, bird, and mammal
diversity across different landscape types showing both positive and negative results
depending on the vegetative community of the solar field (Montag et al. 2016, Peschel et
al. 2019, Grodsky and Hernandez 2020). The biodiversity of an area can be altered by
bottom-up changes in the landscape (Scherber et al. 2010). The negative impact of solar
development on local biodiversity may be mitigated or even reversed depending on the
former landscape’s land use by incorporating beneficial vegetation into the solar facility

landscape.

The effects of the beneficial vegetation on biodiversity would be greatest at the
lower trophic levels, such as with terrestrial invertebrates (Scherber et al. 2010). In the
current biodiversity crisis, the abundance and species diversity of terrestrial
invertebrates are declining at a faster rate than that of vertebrate species (Dirzo et al.
2014). The declines seen in terrestrial invertebrates are thought to be mostly due to
changes in land use, with greater declines seen in grassland landscapes surrounded by
agricultural land (Seibold et al. 2019). Because USSE (utility-scale solar energy) is
expected to develop large tracts of land in agricultural areas, there is a significant
opportunity for those areas to be made pollinator-friendly and thus boost insect
biodiversity. This boost to insect diversity will also benefit agricultural interests through

increased pollinator abundance and insect species diversity.
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Insect species fill many different unique niches, therefore insect biodiversity is
vital in supporting ecosystem function and providing ecosystem services (Kim 1993,
Anderson et al. 2000, Foottit and Adler 2009). Because terrestrial insects fill so many
unique niches and support ecosystem functions, they are a good measure of biodiversity
for an entire ecosystem (Wilson 1987, Duelli et al. 1999, Bellamy et al. 2018). One way
to analyze insect biodiversity in a community, with regard to its effects on the ecosystem
function and ecosystem services, is by the relative abundance of different functional
groups (Bellamy et al. 2018). For example, a high relative abundance of sanguivores
(blood-sucking insects) indicates disturbance and environmental stress in the ecosystem
(Foottit and Adler 2009), while a high proportion of detritivores indicates high ecosystem
functioning in bottom-up interactions and increased nutrient cycling, which is an
important ecosystem function (Seastedt and Crossley, 1984, Armstrong et al. 2021). The
intensity of another ecosystem service, crop pollination, can be estimated through the
relative abundance of the pollinators in an insect community (Aizen et al. 2009,

Woodcock et al. 2019).

Pollinator-friendly landscapes provide habitat and food for pollinators that have
plant species-specific life stages, like butterflies that only lay their eggs on milkweeds
(Zaya et al. 2017). The native plants likewise rely on pollinators to spread their pollen so
they can reproduce and maintain genetic diversity within plant populations (Kearns and
Inouye 1997). Wild pollinators are important not only for the pollination of native plants
but also for the pollination of the many crops on which our food system relies (Kearns

and Inouye 1997, Aizen et al. 2009, Burkle et al. 2013, Woodcock et al. 2019).

Crop reliance on insect pollination is estimated to equal $14.6 billion in
agriculture production each year (Bauer and Wing 2010). Of the 100 crop species that

make up 90 percent of the food supply for 164 countries in the United Nations, 71 of
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those crop species rely on pollination mainly from wild bees, and many more species
rely on other pollinators like flies, beetles, and other insects (Williams 1996). For
agricultural areas, the visitation rates of pollinators, species richness of flower-visitors,
and overall pollination services have been shown to decrease with distance to natural
areas (Ricketts et al. 2008, Carvalheiro et al. 2010, Garibaldi et al. 2011, Geslin et al.
2016). Crops also depend on diverse insect communities to supply natural arthropod
enemies of crop pests to protect the crops from the damaging effects of insect pests
(McCravy 2018). These observations underscore the importance of supporting native
pollinators and diverse insect communities not only to increase plant biodiversity but also
to maintain agricultural systems and ensure reliable food supplies. The pollinator habitat
provided by pollinator-friendly solar facilities is expected to have positive impacts on
agriculture in America, but the size of those effects depends on the effectiveness of
pollinator-friendly management strategies in supporting diverse insect communities and

pollinator abundance (Walston et al. 2018, 2021).

There have been few studies on how incorporating non-turfgrass vegetation into
solar energy infrastructure will affect terrestrial insect communities (Montag et al. 2016,
Jeal et al. 2019, Armstrong et al. 2021). The most recent research on solar-ecosystem
impacts has focused on mitigating the negative effects of solar facilities on aquatic
insects. Solar fields are seen as an ecological trap for aquatic insects because the
aquatic insects can be attracted to solar panels instead of water bodies to lay their eggs
due to the polarized light pollution from solar panels, which mimics the reflection of light
off water bodies at night (Horvath et al. 2010, Szaz et al. 2016, Black and Robertson
2020). Although solar panels without proper light pollution mitigation features may act as
ecological traps for aquatic invertebrates, they do not function as ecological traps for

terrestrial insects and can even be designed to support diverse insect communities.
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To investigate how different pollinator-friendly and turfgrass landscape
management regimes affect terrestrial insect communities, | analyzed the relationship
between pollinator abundance, insect diversity, and floristic conditions established at the
four differently managed sites described in Chapter 1 (CP, CO, BI, MS). | hypothesized
that the pollinator-friendly solar facility (CP, CO) would support taxonomic and functional
insect diversity and overall proportion of pollinators similar to that of the reference site
(BI), and that these community properties would be greatly diminished on the turfgrass
site (MS). This is based on the rationale that the pollinator-friendly facilities would
provide food and habitat to support a diverse insect community, mimicking that of a
natural meadow. | hypothesized that a pollinator-friendly landscape would be less
invaded by non-native plants than a turfgrass landscape and have a higher overall
floristic quality because of the combination of planting diversity and management
strategy designed to outcompete non-native invasive plants. | anticipated that this
expected increase in floristic quality would be correlated with the increased insect

functional diversity.

2.2 Methods

2.2.1 Research Design and Data Collection

For each landscape site (Belle Isle (Bl), Cople Panel (CP), Cople Open (CO),
and Middlesex (MS)) vegetation and insect sampling was conducted 3 times throughout
the 2021 growing season (late May, late July, and early October). For brevity, these
sampling times will be summarized as spring, summer, and fall. At each landscape area,
four 50 meter transects were chosen to best represent the entire landscape. For the CP
and MS areas, transects were restricted to the rows between solar panels due to the
restrictions of the insect sampling technique (described below). Also, the differences in

the insect communities under different shade regimes of solar panels have been studied
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and the flower visitation rates of pollinators did not differ between shade treatments
(Graham et al. 2021) (Figures 1.2 and 1.3). The insect sampling and vegetation surveys

were conducted on the four transects at each site during all three sampling periods.

2.2.2 Insect Sampling

Insect sampling was conducted between 9 am and 4 pm on dry days with less
than 50% cloud cover, temperature greater than 15.5 degrees Celsius, and wind speed
less than 30km/h to get to best representative samples of the insect communities (Bates
et al. 2011, O’Connor et al. 2019). The insect sampling was conducted using a sweep
net while walking at a steady pace down the 50m transects (1 sweep per step)(Spafford
and Lortie 2013, Canola Council of Canada 2017). The sweep net method was chosen
because it has been shown to reflect the insects using the meadow better than other
insect collection methods, such as bee bowl traps (Roulston et al. 2007, Meyer et al.

2017).

The sweep net containing the insects was then placed in a kill jar made of plaster
of Paris soaked with ethyl acetate for 2-3 minutes (Droege et al. 2016). The euthanized
insects were then transferred to Ziploc bags and placed in a cooler. After being stored in
a cooler for the field day, the specimens were taken back to the lab and placed in a zero-
degree Celsius freezer to prevent decay. The mature specimens of Class Insecta were
then separated from the debris and sorted by order. From there, the insect specimens of
each sweep net sample were identified to family or lowest possible taxonomic level for
certain groups (Diptera, which was categorized as Syrphidae or “other”, Microlepidoptera
which could not be identified further due to the loss of scales from the violent sweep
netting, and chalcid wasps which could not be identified further than the Superfamily of

Chalcidoidea)(Borror et al. 1998, Marshall 2006). Thysanoptera (thrips) were not
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included in this study due to their small size and lack of relevance to our research

question.

All specimens were then sorted into morphospecies from their family/lowest
taxonomic level, as morphospecies has been shown to be an adequate representation of
diversity when the expertise needed to identify specimens to genus or species is not
available (Oliver and Beattie 1996, Derraik et al. 2002, 2010, Obrist and Duelli 2010). A
“type” specimen of each morphospecies was collected and kept frozen for future
reference (Bellamy et al. 2018). The families and lowest taxonomic levels of each
specimen were assigned to one of seven functional groups: predator, pollinator,
parasitoid, herbivore, detritivore, sanguivore, and ant (Borror et al. 1998, Zumbado 2000,

Bellamy et al. 2018, Armstrong et al. 2021).

2.2.3 Vegetation Sampling

Plot-based vegetation sampling was conducted using randomly placed 1-meter
square sampling frames along the insect sweep net transects. For all sites, the transects
were subdivided into four equal segments of 12 meters each (48 meters total, leaving 1
meter unsampled at both ends), and a random number between 1 and 12 was selected
for each segment using a random numbers generator to indicate the linear distance
along the segment where the plot would be sampled. An additional second random
number between -2 and +2 was selected specifically for the panel zone transects (CP
and MS) to indicate a perpendicular offset distance in either the south (-2, -1) or north
(+1, +2) direction, or centered on the transect (0). For example, if the first random
number drawn for a panel transect segment was “7” and the second was “0”, the plot
was placed directly on the transect centerline at 7 meters from the start of the segment.
If instead the second number was “-2”, the plot was offset from the centerline 2 meters in

the direction of the panel to the south, and so on. The rationale for this adjustment in the
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panel zones was to get a representative sample across the variable light environment
created by shading from the adjacent panels. For all transects, the above sampling
approaches yielded four plots per transect per sampling event or 16 plots per site per

event.

Within the 1-meter square vegetation plots, all plants were identified to species
level and assigned a cover class using a modified Daubenmire cover class scale with
midpoints recorded for analysis (Mueller-Dombois and Ellenberg 1974). The cover
classes, with midpoints in parentheses (rounded to the nearest whole integer), included:
0-1% (1%); 1-5% (3%); 5-25% (15%); 25-50% (38%); 50-75% (63%); 75-95% (85%);
and, 95-100% (98%). Three additional attributes were recorded for each species in
each plot: 1) presence or absence of flowering at the time of the sample (forbs only); 2)
Coefficient of Conservatism (C-value); 3) native, non-native, or invasive status. Plant
nomenclature follows Weakley et al. (2020), native/non-native status was based on
Virginia Botanical Associates (2021) and Weakley et al. (2020), invasive species were
determined from Heffernan et al. (2014), and C-values were derived from DeBerry et al.

(2021).

2.2.4 Data Analysis

Data analysis was conducted using R version 4.1.1 (R Core Team 2021) and the
BiodiversityR package (Kindt and Coe 2005) with the vegan package (Oksanen et al.
2020). The insect and vegetative data were first summarized descriptively to give an
overview of the insect and plant communities at each of the sites throughout the growing
season. The proportion of each order and the overall abundance of insects were
displayed in bar graphs for each site and across the three sampling periods. Properties
of the insect communities of each of the sites were evaluated using family level
accumulation curves (family richness), family level and morphospecies level Renyi
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profiles (species diversity), and an analysis of similarity (ANOSIM) (Kindt and Coe 2005).
For the vegetation data, summary statistics included the following intrinsic floristic quality
parameters (DeBerry and Perry, 2015): species richness (S), native species richness
(N), relative percent native abundance (%N), relative percent invasive abundance

(%Inv), Floristic Quality Index (FQI), and percent flowering (%Fl).

The insect functional group data were summed for each site individually by
sampling period and then collectively across all three sampling events. The proportions
of each functional group’s abundances were represented graphically for each site over
the entire growing season and by sampling period. The monotypic relationships in the
insect communities of each site were evaluated using Spearman rank-order correlation
tests on the insect diversity, insect functional groups, and intrinsic floristic quality
parameters (Kindt and Coe 2005). The Spearman rank-order correlation test was
chosen due to its ability to handle deviations from normality and examine non-linear
relationships. The differences in the insect communities of each site and their
relationship with the vegetative community variables, percent flowering, FQI, and plant
species richness, were modeled using non-metric multidimensional scaling
(NMDS)(Kindt and Coe 2005, Armstrong et al. 2021). The final NMDS was chosen
based on the number of dimensions (k value) with the least stress according to the

“stressplot” function in the vegan package.
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2.3 Results

2.3.1 Insect Descriptive Diversity Metrics

From the sw net sampl total of
° © swWeep net samples, a fotal o Season | Bl | CP | CO | MS | Total

10,743 insect specimens were collected in the  |[SPring 723| 192] 151f 341] 1407

Summer | 1183]1049] 643| 1099| 3974

2021 growing season. These insects Fall 2221| 751 716|1674| 5362
. Total 4127|1992 1510| 3114| 10743
represented 8 orders, 56 families/lowest -
Table 2.1 Insect abundance summaries by season
and overall.

taxonomic level (see Table A.1, Appendix), and

226 morphospecies. At all sites except CP, the overall number of insects collected
increased across the growing season with the fall samples from all sites totaling almost
four times that of the spring samples. Bl had the greatest overall insect abundance
across the growing season, followed by MS and then, CP, and CO (Table 2.1). The
insect communities of the sites were sufficiently sampled according to the family
accumulation graph, which is seen to be approaching an asymptote for every site
(Figure 2.1). Although MS had the second greatest overall insect abundance, it had low
evenness at the order level (Figure 2.2). The unevenness of MS is most likely due to the
high proportion of Diptera in MS across all seasons compared to the other sites (see

Table A.1, Appendix).
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The trends seen at the order level analysis are similar to those seen at the family
level Renyi profile. Bl, CP, and CO have similar high richness, Shannon Diversity Index,
Simpson Diversity Index, and species evenness values compared to MS, which has
much lower scores for every diversity metric (Figure 2.3). The Renyi profiles for each site
conducted at the morphospecies level showed a similar pattern to the family level Renyi
profiles (Figure 2.3). The insects collected at each site grouped both at the family level
(ANOSIM: R=0.437, p=0.001) and morphospecies level (R=0.356, p=0.001) were

significantly different (Figure 2.4).
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2.3.2 Insect Functional Diversity Metrics

Insects from all seven functional groups were found at every site throughout the
entire growing season; however, the proportion of each functional group’s abundance
differed between sites. Notably, MS was dominated by sanguivores and herbivores,
while the other sites had a more even representation of all the functional groups. The

relative evenness of the functional groups differed across the growing season for Bl and
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Figure 2.5 Functional group distribution for (A) overall, (B) spring, (C) summer, (D) fall.
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MS, while CP and CO’s functional group evenness remained relatively stable over the

growing period (Figure 2.5).

2.3.3 Vegetation Diversity Metrics

One hundred thirty-five (135) plant species were documented in the overall study
across the 4 sites (CP, CO, BI, MS), with the full spring, summer, and fall sampling effort
including 48 transects and 192 plots sampled. Seasonal abundance matrices are

provided in the Appendix (Tables A.2 through A.13).

Throughout the growing season, dominant species included Rudbeckia hirta
(black-eyed Susan), Chamaecrista fasciculata var. fasciculata (partridge pea), and
Symphyotrichum pilosum var. pringlei (frost aster) at CP, Coreopsis lanceolata (long-
stalk coreopsis), Helianthus angustifolius (narrow-leaf sunflower), and C. fasciculata var.
fasciculata at CO, Solidago altissima ssp. altissima (tall goldenrod), Andropogon gerardii
(big bluestem), and Eragrostis spectabilis (purple lovegrass) at Bl, and a cultivar of
Schedonorus arundinaceus (tall fescue) at MS. The above species had been included in
the seed mixes for the sites when they were developed, and all but the latter three (i.e.,
all but the grasses) were the most prolific flowering forbs on the respective sample sites.
Additional volunteer species included Setaria parviflora (knotroot bristlegrass) at CP,
Kummerowia stipulacea (Korean clover) at CP and CO, Bromus japonicus (Japanese
brome) at Bl, and Trifolium repens (white clover) and Digitaria sanguinalis (northern
crabgrass) at MS. Although non-native invasive species were uncommon on all sites,
Lespedeza cuneata (sericea lespedeza) had a scattered distribution on CP, CO, and BI,
Sorghum halepense (Johnson grass) was noted in several plots on Bl, and Stellaria

media (common chickweed) had a scattered distribution on MS.
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The intrinsic floristic quality parameters for each site are summarized by season

and for the overall datasets in Table 2.2. Of note, CP had the highest overall values for

S (82), N (69), and %FI (26.1%), as well as the highest single-season S (51 species,

summer sample). CO had the highest overall FQI (22.7), lowest overall %Inv (0.3%), and

the highest single-season %FI (42.5%, fall sample, owing mostly to the late-flowering

dominant H. angustifolius). Bl had the highest overall %N value (85.7%) and was

overwhelmingly dominated by native species in the latter half of the growing season (%N

= 90.0% and 97.3% in summer and fall, respectively). As might be expected, the

turfgrass condition at MS was lowest for most floristic quality parameters, with the

exception of a surprisingly high %FI measure in spring (22.7%) due mostly to the

predominance of early-flowering T. repens.
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Table 2.2 Floristic quality metrics by season and overall.

2.3.4 Correlation Analysis

Site-Insect Correlations: The overall Spearman correlation tests averaged

across the three sampling events (spring, summer, fall) showed that CP was positively

correlated with pollinator abundance (p=0.012), while MS was negatively correlated with

pollinator abundance (p=0.005) (see Table A.14, Appendix). Overall CP, CO, and Bl

were either positively correlated with the insect functional groups or showed no

significant relationship, except for a negative correlation between CO and herbivore

abundance (p=0.03). MS, unlike the others, was negatively correlated with insect
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morphospecies diversity and most insect functional groups (p<0.001). Two exceptions
included a positive correlation between MS and sanguivore abundance (p<0.001) and
no significant relationship with parasitoid abundance (P=0.139). Finally, insect
morphospecies diversity was positively correlated with CP (p=0.004) and negatively

correlated with MS (p<0.001).

Site-Floristic Quality Correlations: Although CP and CO are adjacent sites, the
different management strategies used on each were reflected in their unique
relationships to floristic quality. For example, CO showed a positive relationship with
plant species richness (p=0.005), FQI (p<0.001), and percent flowering (p=0.005), and a
negative relationship with %invasive species (p=0.001). By contrast, CP showed only
one significant positive correlation, which was with plant species richness (p<0.001), and
one significant negative correlation with %invasive species (p = 0.001). The reference
site at Bl was significantly positively related to %native species (p<0.001). Finally, as
expected, the turfgrass condition at MS was negatively correlated with nearly all floristic
quality metrics, including species richness (p<0.001), %native species (p<0.001), FQl

(p<0.001), and %flowering (p=0.023).

Floristic Quality-Insect Correlations: Based on the overall dataset, pollinators
were positively correlated with plant species richness (p=0.014), %native species
(p=0.002), and %flowering (p<0.001), but there was no significant relationship between
pollinators and FQI (p=0.0565). For sanguivores, the overall correlation analysis
showed significant negative relationships with most floristic quality metrics (plant species
richness, %native species, and FQI; p<0.01). Finally, morphospecies diversity was
positively correlated with plant species richness, %native species, %invasive species,

FQl, and %flowering (p<0.01).
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Seasonal Correlation Trends: Pollinator abundance was not significantly
correlated with any site throughout all three seasons (see Tables A.15-A.17, Appendix).
Although pollinator abundance was positively correlated with CP overall, it was only
seasonally correlated with CP in summer (p<0.001). In the fall pollinator abundance was
positively correlated with Bl (p=0.022) and negatively correlated with MS (p<0.01). Insect
morphospecies diversity was negatively correlated with MS throughout all three seasons
and was only positively correlated to CP in the spring (p=0.026). Pollinator abundance

was positively correlated with different floristic quality measure throughout the seasons.

Although both CP and CO were planted with a beneficial seed mix, they were
found to not be equally resistant to invasive species. CP had a positive relationship with
%invasive species, while CO had a significant negative relationship with %invasive
species in both spring and summer. But both CP (p=0.078) and CO (p=0.172) were not
significantly correlated with %invasive species in the fall. CP and CO were also
positively significantly correlated with %flowering during different seasons; CO in the
spring ((p<0.01), CP in the summer (p<0.01), and neither in the fall. Unlike CO and CP,
Bl was negatively correlated with %flowering in the summer (p=0.025) and spring

(p=0.011).

2.3.5 Insect Community Modeling

The relationship between floristic quality and insect communities shown in the
overall NMDS model is similar to the results from the correlation analysis (Figure 2.6). In
the NMDS, CP and CO data points are seen to be closely aligned with and overlapping
with some of the Bl data points. This pattern is also seen in the separate Summer
(Figure A.2) and Fall (Figure A.3) NMDS plots, but not the Spring (Figure A.1) NMDS
plot. The MS points, however, remain separate from the other groups in the lower right
corner and are clearly negatively correlated with floristic quality and insect diversity,
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which show positive relationships with CP, CO, and Bl based on the vector trajectories in

the NMDS biplot.
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Figure 2.6 NMDS of Insect Morphospecies Abundance. K = 2. Environmental variables shown in relation to insect
samples are percent native species cover (N), floristic quality index (FQI), percent flowering (Fl), plant species richness
(S), and insect morphospecies Shannon Diversity (Diversity). The length of each environmental variable’s arrow
corresponds to the strength of the relationship.

2.4 Discussion

2.4.1 Findings

Although the Pollinator-Smart sites, CP and CO, were found to have fewer total
insects than the pollinator-friendly meadow and the turfgrass site, they had more

taxonomically and functionally diverse insect communities (Figure 2.3 and Figure 2.5).
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The Pollinator-Smart sites also had the highest proportion of pollinators across all
seasons (Figure 2.5). The turfgrass site was found to be overwhelmingly dominated by
sanguivores and, to a lesser extent, parasitoids, with few insects from other functional
groups and low insect diversity values compared to the other sites (Figure 2.3 and
Figure 2.5). The Pollinator-Smart sites showed floristic quality measures similar to the
native pollinator reference meadow at Bl (Table 2.2). This suggests that the Pollinator-
Smart landscapes at Cople overall succeeded in having a beneficial vegetation
community, mimicking a pollinator-friendly meadow, supporting pollinators, and
producing a functionally and taxonomically diverse insect community throughout the

growing season.

Although the Cople sites as a whole achieve the goals of pollinator support and
floristic diversity, there were differences in how CO and CP related to the floristic quality
measures and insect functional groups across the seasons. This suggests that the
different management strategies used inside (CP) and outside (CO) of the panel zone
can create different vegetative and insect communities that provide the most support for
pollinators at different times during the growing season. CP and CO also differed in their
relationship to invasive species cover with CP being significantly positively correlated
with %invasive species cover and CO being significantly negatively correlated with %
invasive species cover. This indicates that the vegetative community planted at CP was
less resistant to invasion from invasive plant species than the vegetative community
planted at CO. This difference in invasive species cover could also be related to the
greater disturbance seen in CP than in CO during solar panel construction, as the panel
zone would naturally incur more disturbance during panel installation than the
surrounding area (Alpert et al. 2000). This suggests that the panel zone of pollinator-

friendly solar facilities may require more management strategies than the open zone to
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combat invasive species, at least in the first few years after installation until the panel
zone vegetation can fully recover from the initial disturbance. Both CO and CP, however,

had overall low percentages of invasive species cover, 5.7% and 0.3% (Table 2.2)

The insect diversity seen at MS adds to the findings of other researchers that a
vegetated solar facility, even if dominated by turfgrass, supports more insects than a
facility lacking vegetation (Armstrong et al. 2021). This study’s results further suggest
that although a turfgrass landscape can increase overall insect abundance, increases in
functional and taxonomic diversity require landscapes with a more diverse vegetative
community including more beneficial plants. The high taxonomic and functional insect
diversity seen at CO, CP, and Bl indicate that these landscapes support greater
ecological functioning at the regional level (Bond and Chase 2002). Increased ecological
functioning provides greater control over crop pests through natural enemies, and thus
can increase crop Yyields (Collins and Qualset 1998). Higher functional diversity has been
shown to increase the robustness of ecosystem food webs (Dunne et al. 2002, Foottit and
Adler 2009). The positive effects of the functionally diverse insect community seen at the
Pollinator-Smart site should extend to the other parts of the food web, and thus support
greater bird, mammal, and reptile diversity in the area (Foottit and Adler 2009, Scherber et

al. 2010).

2.4.2 Limitations

This study provides the first look into the effects of pollinator-friendly solar
facilities on insect and plant diversity in the Mid-Atlantic, but replication is needed to
support the conclusions drawn here. The “pilot study” nature of this project was
necessitated by the lack of available pollinator-friendly solar sites in the region, the

Cople Solar Site being the only certified facility in the Virginia Pollinator-Smart program
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at the time this study was initiated. However, there are likely to be more pollinator-
focused sites developed in the future given the increasing popularity and interest in

these types of sustainable practices on solar facilities.

The results seen here should encourage further research into the ecological
effects of pollinator-friendly management at solar facilities across the Mid-Atlantic, as
many states are following suit with their own pollinator-friendly solar programs. More
studies should focus on the effects of solar development practices on biodiversity of
higher trophic levels, such as birds and mammals. Other methods of insect community
data collection, such as bee bowls, vacuum collection, and point observation of
vegetation, could also be implemented to look more closely at specific insect taxonomic
groups, such as Lepidoptera, which are underrepresented in this study due to their fast

reaction times in avoidance of sweep nets.

The functional and taxonomic insect diversity metrics were also limited by
categorizing the Diptera families as Sryphidae and “other”. This “other” category, which
was assigned the sanguivore functional group, most likely underestimates the functional
and taxonomic diversity of Diptera. These negative effects on Diptera diversity in the
family and functional group analyses may be mitigated by the morphospecies analyses

of Diptera, which included a vast number of morphospecies in the “other” category.

2.4.3 Conclusions

From the results of this study, | concluded that, at a minimum, a proactively
managed pollinator-friendly solar facility can support an insect community that is
functionally equivalent to a reference ecosystem and, by some standards, more diverse
for certain beneficial taxa. By implementing pollinator-friendly landscape practices like

those described in Virginia’s Pollinator-Smart Program rather than turfgrass landscapes,
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USSE facilities in the Mid-Atlantic can increase the ecosystem services of pollination and
pest control through natural enemies for nearby agricultural lands and increase overall
ecosystem functioning and biodiversity. However, pollinator-friendly landscapes are not
a “one size fits all” solution to solar facility development, as they may not always be the
most beneficial land use for that area or not well-suited for a particular environment.
There are many other beneficial land uses for solar facilities currently being explored,
such as agrivoltaics and grazing (Dupraz et al. 2011). There is even the opportunity for
sheep grazing to co-exist with pollinator-friendly solar facilities at low densities (Montag
et al. 2016). The future looks bright for pollinator-friendly solar facilities, but more studies
need to be conducted across different areas and environments to better understand the

effects of a pollinator-friendly landscape on ecological services and function.
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Chapter 3: Microclimate Effects of the Pollinator-Smart Landscape
Compared to the Traditional (Turfgrass) Landscape in Mid-Atlantic Solar

Facilities

3.1 Introduction

In addition to the ecosystem benefits described in Chapter 2, there may be
economic advantages to a solar-pollinator co-location approach that derive from the
higher transpiration rates of forbs when compared to grasses and grass-like plants (i.e.,
graminoids) resulting in a cooler microclimate (Lambers and Oliveira 2019).
Transpiration is an endothermic process in which water evaporates from plant leaves
through the stomata and causes the canopy leaves to be a cooler temperature than the

surrounding air (Mahan and Upchurch 1988).

The mechanism of transpiration is found in all plants, but the rate of transpiration
can vary between species due to differences in stomatal density and water use.
Decreases in leaf temperature due to transpiration are called latent heat loss. Latent
heat loss refers to cooling as water changes from one state to another (Rupp and
Gruber 2019). Physical leaf traits, in addition to transpiration, affect a plant’s thermal
tolerance. These physical traits include many leaf characteristics like color, size, shape,
surface area, and surface texture, which differ between graminoids and forbs. The
cooling effects of physical leaf traits are called “sensible heat loss” because no state
change is involved in the cooling; only convective cooling through heat exchange is
present (Rupp and Gruber 2019). However, sensible heat loss from physical leaf traits
can affect transpiration rates and thus have indirect effects on latent heat loss (Monteiro
et al. 2016, Lin et al. 2017, Rupp and Gruber 2019). The differing transpiration rates

between graminoids and forbs could have significant cooling effects on PV solar panels.
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PV solar panels produce less energy at higher temperatures and this energy
production deficit is significant at temperatures greater than 25 °C (Kaldellis et al. 2014).
Native broad-leaved plants have been shown to cause a cooling effect on solar panels,
which is believed to be due to the plants’ transpiration causing sensible and latent heat
loss from the surrounding microclimate (Hernandez et al. 2019, Barron-Gafford et al.
2019). This cooling effect then has the potential to promote more efficient solar energy
production at higher temperatures (Macknick et al. 2013, Kaldellis et al. 2014,
Hernandez et al. 2019). The economic benefits of this phenomenon have been
assessed using agricultural crops under solar panels, an emerging field referred to as
“agrivoltaics”. One study in Arizona cited an 8.9 degree Celsius decrease in agrivoltaic
panel daytime temperatures throughout the growing season, with an estimated 3%
increase in energy production compared to bare-ground panels (Barron-Gafford et al.
2019). While these benefits should theoretically translate to pollinator-friendly
approaches, these concepts have yet to be tested in the Mid-Atlantic Region or on sites

comparing pollinator-friendly and turfgrass landscapes.

The purpose of this study was to evaluate the potential for increased energy
generation efficiency using a pollinator-friendly landscaping strategy in comparison with
a traditional turfgrass approach on solar installations in the Mid-Atlantic Region. This
was done by measuring panel temperature, ambient temperature, panel humidity, and
under-panel plant species cover differences between two solar facilities — one certified
Pollinator-Smart and one traditional turfgrass — that were approximately the same size
and age, with the same panel technology and energy generating capacity, located in
close proximity to one another in eastern Virginia (see site descriptions, Chapter 1). |
hypothesized that: 1) the transpiration-mediated cooling effect from the forb-dominated

Pollinator-Smart facility would result in significantly more humid and cooler under-panel
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conditions in comparison with the turfgrass facility; 2) this would translate into a
measurable increase in energy production; and, 3) this relationship would be most
apparent on hotter days (> 25 °C) at high irradiance conditions (i.e., higher sunlight

intensity).
3.2 Methods
3.2.1 Study Sites
Descriptions of the Cople and Middlesex Sites are provided in Chapter 1.
3.2.2 Data Collection

Over the course of the 2021 growing season, under-panel temperature, under-
panel humidity, ambient temperature, irradiance, and energy output were measured at
each site. Wiring diagrams were acquired from the solar developer (Sun Tribe Solar) and
a single row of panels (12 total) was selected for instrumentation at each site such that
the measured environmental variables could be tied directly to energy output at a single
inverter. At each site, 6 iButton Hygrochron continuous recording temperature/humidity
sensors were placed under the selected panel section and monitored from June 10 to
November 10 (153 days), during which time sensors recorded the temperature (°C) and
percent relative humidity every 30 minutes. Ambient temperature (°C) and solar
irradiance (watts/m?) were also tracked on the same time interval using continuously
recording weather stations, the Meter Group ATMOS41 for ambient temperature and the

Hukseflux SR0O5 pyranometer for irradiance, installed by the solar developer at each site.

The vegetation under the iButton sensors at each site was surveyed in mid-July,
mid-August, and early October to characterize the under-panel plant community

throughout the monitoring period. Vegetation surveys were completed using 2m x 2m
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plots placed directly under each iButton. Within plots, all plants were identified to species

level and cover class and habit (i.e., graminoid or forb) were recorded for each species

3.2.3 Data Synthesis

Any timepoints missing observations for one or more of the environmental
variables were excluded from the datasets. These few missing environmental data
observations at each of the sites were due to blackouts in the energy output recording
and missing iButton data from the times the iButtons were offline during data downloads.
All rows with irradiance values equal to zero were deleted from the datasets because the
research question only pertained to energy and temperature effects under non-zero
irradiance conditions (i.e., values recorded during night hours or under heavy cloud
cover were removed from the datasets). A few outliers such as aberrantly high or
negative energy values were thought to be due to data transcription errors or potentially
anomalous factors related to the solar panel circuit and were therefore also removed

from the datasets.

To examine the relationship between forb cover and panel temperature, the
difference between under-panel temperature (iButtons) and ambient temperature
(weather stations) recorded within +/- two weeks of each vegetation sampling event
were paired with the percent forb values recorded for each sample. These temperature
difference and percent forb data points were then filtered to include only data points
where ambient temperature was greater than or equal to 25 degrees Celsius and
irradiance was equal to 500. These filters were used because the temperature difference
has been shown to only have detectable effect on energy production at temperatures
greater than or equal to 25 degrees Celsius (Kaldellis et al. 2014). Further, PV energy
production is expected to be maximized under sunny conditions as is photosynthesis,
which is linked to the thermal buffering effect.
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3.2.4 Statistical Modeling

The data were analyzed using generalized linear models (GLM) to predict under-
panel temperature and relative humidity. The predictor variables used in each model
were ambient temperature, irradiance, and site, as well as their interactions. Only
variables that were significant predictors of the response variable, as determined by the
GLM statistical confidence tests, were included in the final models. Model fits were
assessed by using McFadden’s pseudo-R-squared. All statistical models were evaluated

in R version 4.1.1 (R Core Team 2021).

A GLM was selected for the under-panel temperature model (“temperature
model”) over other possible model types (e.g., linear regression, generalized additive
model, or ANOVA) due to its ability to handle multiple predictor variables and because
the relationships of the predictor variables with the response variable were expected to
be linear (Campbell and Norman 2000, Zuur et al. 2009). A Gaussian distribution was
used for the temperature model because the variables were continuous and normally
distributed. The under-panel humidity model (“humidity model”) used the Poisson
distribution because relative humidity is a percentage and therefore discrete, not
continuous like the Gaussian distribution requires (Zuur et al. 2009). The residuals for
both models were checked and found to be consistent with the implicit assumptions of a
GLM (Zuur et al. 2009). The final models were then used to predict response variables
for each of the sites given a 0-30 °C range of ambient temperatures held constant at high

(800 watts/m?), medium (500 watts/m?), and low (200 watts/m?) irradiance values.

A Pearson correlation test was conducted on the percent forb and temperature
difference filtered dataset (Zuur et al. 2007). The average temperature difference for

each vegetation sample was calculated and graphed with percent forb cover. A linear
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model was used to make a line of best fit for the relationship between percent forb cover

and the difference in ambient and panel temperature.

The System Advisory Model (SAM) created by the National Renewable Energy
Lab (NREL) was used to quantify normal power generation in a standard 200kW DC
system for both a traditional and Pollinator-Smart PV system based on the under-panel
temperature difference found between both sites in the temperature GLM. The SAM
simulations were parameterized for the 2021 weather file from the National Solar
Radiation Database representing the geographic midpoint between the two sites
(37°48'36.0"N, 76°34'48.0"W). These simulations used the standard defaults of SAM, a
PV array of Sunpower-X21-335 (mono-crystalline silicon) modules with a nominal
efficiency of 20.5521% (Blair et al. 2013, Barron-Gafford et al. 2019, NREL 2020). The
only variable that differed between the Pollinator-Smart landscape simulation and the
traditional ground-mounted simulation was PV panel temperature. To best estimate the
possible difference in standard power generation for these two landscape types, we
used the temperature difference found between the two sites under high irradiance
conditions and applied that difference to the panel temperature used in SAM for the

Pollinator-Smart simulation between June and October.

3.3 Results

3.3.1 Under-Panel Temperature and Humidity GLMs

Predictor variables (ambient temperature, irradiance, site, and the interaction terms
between site and irradiance, site and ambient temperature, and irradiance and ambient
temperature) in the GLM were all determined to be significant predictors of average
under-panel temperature and humidity (for all under-panel temperature variables, p <

0.001; for all under-panel humidity variables, p < 0.001, with the exception of site (p =
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0.04 ,temperature model; p = 0.00124, humidity model) so all variables were retained in
the final models. The temperature GLM accounted for most of the variation in under-
panel temperature (pseudo-R-squared = 0.83); however, the humidity GLM did not

(pseudo-R-squared = 0.23).

The predictions of the temperature GLM in the high and medium irradiance conditions
showed that the turfgrass site was 1-2 °C hotter than the Pollinator-Smart site across all
the ambient temperatures tested. Predicted under-panel temperatures for both sites
were hotter than ambient temperature, but the Pollinator-Smart site stayed cooler than
ambient temperature up to 29 °C, while the turfgrass panels were hotter at lower ambient
temperature (24 °C) under high irradiance conditions (Figure 3.1). This same pattern was
seen to a lesser extent under medium irradiance conditions (Figure 3.2). Under low
irradiance conditions, however, the GLM predicted similar under-panel temperatures for

each of the sites under the same ambient temperatures (Figure 3.3).
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Predicted Panel Temperatures with High Irradiance
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Figure 3.1 Predicted Panel Temperature with High Irradiance. This figure was made using the panel temperature predicting GLM
with irradiance equal to 800 watts per meter squared and was formatted to best show the intersections of each line with the 1:1
relationship shown by the dotted line. 95% confidence intervals are shown in gray around each of the lines.
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Predicted Panel Temperatures with Medium Irradiance
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Figure 3.2 Predicted Panel Temperature with Medium Irradiance. This figure was made using the panel temperature predicting
GLM with irradiance equal to 500 watts per meter squared and was formatted to best show the intersections of each line with
the 1:1 relationship shown by the dotted line. 95% confidence intervals are shown in gray around each of the lines.

Predicted Panel Temperatures with Low Irradiance
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Figure 3.3 Predicted Panel Temperature with Low Irradiance. This figure was made using the panel temperature predicting GLM
with irradiance equal to 200 watts per meter squared and was formatted to see the overall trends of each line across all the
given temperatures. A 1:1 relationship is shown by the dotted line. 95% confidence intervals are shown in gray around each of
the lines.
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Under high irradiance conditions, the humidity GLM predicted higher under-panel
relative humidity at the Pollinator-Smart site versus the turfgrass site in all tested
ambient temperatures (Figure 3.4). Under medium irradiance conditions, under-panel
relative humidity was higher for the Pollinator-Smart site at lower ambient temperatures,
but this trend reversed at higher temperatures (Figure 3.5). Under low irradiance
conditions, the under-panel humidity was higher for the turfgrass panels across all

modeled temperatures (Figure 3.6).

Panel Humidity with High Irradiance

@ Turfgrass Site
@ Pollinator-Smart Site

75

Panel Relative Humidity
70

60
I

T T T T T
20 22 24 26 28 30

Ambient Temperature (Degrees Celsius)
Figure 3.4 Predicted Panel Humidity with High Irradiance. This figure was made using the panel
humidity predicting GLM with irradiance equal to 800 watts per meter squared and was

formatted to see the overall trends of each line across all the given temperatures. 95%
confidence intervals are shown in gray around each of the lines.
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Panel Humidity with Medium Irradiance
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Figure 3.5 Predicted Panel Humidity with Medium Irradiance. This figure was made using the
panel humidity predicting GLM with irradiance equal to 500 watts per meter squared and was
formatted to see the overall trends of each line across all the given temperatures. 95%
confidence intervals are shown in gray around each of the lines.
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Figure 3.6 Predicted Panel Humidity with Low Irradiance. This figure was made using the panel
humidity predicting GLM with irradiance equal to 800 watts per meter squared and was formatted
to see the overall trends of each line across all the given temperatures. 95% confidence intervals
are shown in gray around each of the lines.
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3.3.2 Percent Forb vs. Humidity Model

The Pearson correlation test showed a significant negative relationship between percent
forb cover and the difference between solar panel temperature and ambient temperature
(p<0.001) (i.e., greater forb density was correlated with lower under-panel temperature).
This relationship is seen in the line of best fit plotted over the average temperature
difference for each percent forb cover sample (figure 3.7). The variance in the averages
also shows that, although the relationship was significant, other factors, such as wind
and rainfall, which were not accounted for, likely contribute to the difference in panel

temperature and ambient temperature.

Average Percent Forb Cover Compared to Temperature Difference
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Figure 3.7 Average Percent Forb Cover Compared to Temperature Difference. The line of best fit for the whole data set

is shown in black. The points represent each under-panel vegetation sampling point and the average temperature
difference for the two weeks before and after that sampling date.
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3.3.3 SAM Energy Estimates

The turfgrass simulation produced 8,668 kWh per year (16.4% capacity factor),
while the Pollinator-Smart simulation, with reduced PV panel temperatures, produced
8,709 kWh per year (16.5% capacity factor). This energy difference equates to the
Pollinator-Smart landscape producing approximately 0.5% more energy per year than
the turfgrass landscape. The Pollinator-Smart landscape simulation produced
approximately 1% more energy than the traditional simulation during June-October, the

time period in which the under-panel temperature differed between the simulations.

3.4 Discussion

The panel temperature part of my hypothesis was supported since the Pollinator-
Smart site did show cooler under-panel temperatures across the range of normal
ambient conditions under high irradiance. This cooling effect weakened under mean
irradiance conditions and was not present under low irradiance conditions, which
suggests the cooling effect from transpiration of forbs is somewhat dependent on
irradiance, particularly in high ambient temperatures. The panel temperature differences
between the sites seen in the predictions are smaller than the differences seen in the
Arizona study (Barron-Gafford et al. 2019), but that is likely due to the traditional
landscape in this study being turfgrass instead of bare-groundClick or tap here to enter

text..

Although the turfgrass site had a greater overall mean relative humidity than the
Pollinator-Smart site, the humidity GLM, which took into account the effects of site and
irradiance, predicted that the Pollinator-Smart site would have greater under-panel
humidity. The overall average relative humidity could differ between sites due to a

difference in ambient humidity and soil at each of the sites, not due to microclimate

44



caused by the vegetation. Based on site observations, the soils at the turfgrass site were
more loamy in texture compared to the sandier soils at the Pollinator-Smart site, in which
case the turfgrass soils would likely have a higher water-holding capacity which could
perhaps contribute to the differences in overall humidity measured. More studies should
be done looking at the effect of the different plant communities on microclimate humidity
in controlled settings. Ambient humidity could not be controlled for in this study due to

the lack of site-level ambient humidity data throughout the growing season.

The humidity GLM, which accounted for significant site differences in ambient
irradiance and ambient temperature, supported my hypothesis that the Pollinator-Smart
site would have a greater relative humidity in high irradiance and high ambient
temperature conditions. The humidity GLM also showed that under medium irradiance
conditions the sites did not differ in relative humidity and that the turfgrass site had a
greater relative humidity in low irradiance conditions. This supports the notion that the
cooling effect from transpiration of the forb-dominated Pollinator-Smart landscape is
most effective during high irradiance conditions. This is likely due to plants having
greater photosynthetic activity under high irradiance, which would lead to a greater rate
of transpiration in the plants (Lambers and Oliveira 2019). Under these conditions, the
difference in transpiration rates between forbs and graminoids and their relative cooling
effects would be most apparent. These conditions are often present in the afternoons of
the summer months when energy demand is highest due to air conditioner usage (Taylor
Brown, Sun Tribe solar, pers. comm.). The Pearson correlation test showed that percent
forb cover did have a significant negative effect on the difference in panel temperature
and ambient temperature. This supports my hypothesis that greater forb cover increases

the cooling effect on the panels from transpiration of vegetation.
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The results of the SAM simulations show that the cooling effect of the Pollinator-
Smart landscape under high irradiation would have a positive effect on overall energy
output. These results support the idea that, in terms of energy production, Pollinator-
Smart solar facilities could be economically favorable in the Mid-Atlantic region,
particularly when energy production efficiency is averaged across the 25-30 year
lifespan of a typical solar installation. The results of the temperature model can be used
along with the SAM simulations to make inferences about how the different landscape
types could affect energy production during the growing season in the Mid-Atlantic

region.

These inferences could then be used to inform landscaping decisions for solar
companies, as well as the government agencies regulating the solar industry, to promote
management practices on these sites that also promote biodiversity. With an anticipated
nationwide increase in USSE in the coming years as many states work towards 100%
carbon free electricity generation (Blinken 2021, Horowitz 2021), there is potential for
hundreds of thousands of acres of USSE facilities to be filled with native plants, thus
promoting pollinator communities and increasing biodiversity. With a measurable
difference in thermal buffering and an estimated significant difference in energy
production between pollinator-friendly and turfgrass solar sites during the growing
season, the rationale for solar developers to “make the switch” to a pollinator-friendly

approach is even more compelling.
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Appendix

Insect Family Abundance May July October
Order Family/LTL Functional Group| BI |CP [CO|MS| Bl |[CP|[CO|MS| Bl | CP | CO | MS
Coleoptera Cantharidae PL 1 2 2 6 5

Carabidae PR 1 1 5 5 1 1
Cerambycidae D 6 1 1
Chrysomlidae H 12 1 2 38 | 11 7 4 1 2 15
Coccinellidae PR 1 6 1 1 2 2 4 3
Curculionidae H 26 2 2 2 1 6 14 | 66 7
Elateridae PR 1 1 1 1
Lampyridae PR 1
Lathridiidae D 5 3 6 62 | 22 | 45 2
Melyridae PL 1 3
Mordellidae PL 4 3 1 1 2
Phalacridae H 6 78 4 4
Scarabeidae H 1 6 71 17 1 1
Diptera Syrphidae PL 8 4 2 11 21 3 7 9 6 3
Other S 376 | 66 | 86 | 176 | 184 | 443 | 359 | 87 | 462 | 121 | 128 | 155
Hemiptera Alydidae H 2 3 2 1 3 15 1
Anthocoridae PR 1 7 4 1 1 3 13 1 41 4 6 1
Aphididae H 14 4 36 | 143 | 15 1 11 ] 31 (214 3 3
Berytidae H 1 1 4
Cercopidae H 2 6 24 5
Cicadelliddae H 58 | 25 | 13 | 112 ]| 52 5 41 [ 149] 6 55 | 75 | 74
Corimelaenidae |H 5 4 1
Derbidae D 2 1
Issidae H 9
Lygaeidae H 1 1
Membracidae H 1 1 2 2 17 1 3
Miridae H 8 14 | 18 7 1 35 | 26 | 148 | 67 | 98 | 19
Pentatomidae PR 5 1 4 3 2 2 17
Psyllidae H 64 7 2 113 | 21 4 1
Reduviidae PR 2 1 7 2
Tingidae H 6
Hymenoptera |Apidae PL 6 2 45
Braconidae PA 3 1 1 1 5 1 6 4 2
Chalcidoidea PA 91 1 3 6 | 147 | 12 | 18 | 22 | 813 | 76 | 86 | 52
Colletidae PA 1 1
Formicidae A 19 7 14 1 |395| 53 | 76 1 1369 9 49
Halictidae PL 6 1 126 | 18 1 3 9 13
Ichneumonidae |PA 2 3 2 3
Pompilidae PA 2 5 3
Scoliidae PA 6 1
Sphecidae PR 5
Tiphiidae PA 1 1
Vespidae H 8 1 1 3
Lepidoptera |Lycaenidae PL 1
Microlepidoptera |PL 4 2 9 4 4 5 1 3 1
Pieridae PL 2
Neuroptera Chrysopidae PR 1
Orthoptera Acrididae H 6 1 3 1 6 2 2 9
Gryllacrididae H 1
Gryllidae PR 7 2
Mantidae PR 4 4 1 3 1
Tetrigidae H 1
Tettigonildae H 1 13 5 18 3 2 4 2
Psocoptera Psocidae D 1

Table A.1 Insect family abundance summary.
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Spearman Correlation Values Overall

Rho-Values
Bl CcP co MS S %N | %Inv | FQI %F| | Predator | Herbivore | Pollinator|Parasitoid | Detritivore | Sanguivore| Ant
CcP -0.333
co -0.333(-0.333
MS -0.333|-0.333| -0.333
S -0.278| 0.541| 0.397|-0.660
%N 0.496| 0.242| 0.207|-0.945| 0.470
%lInv 0.221| 0.456|-0.447|-0.230| 0.316| 0.225
FQl 0.050| 0.107| 0.677|-0.834| 0.671| 0.751|-0.089
%F| -0.161| 0.092| 0.396(-0.327| 0.293| 0.338|-0.119| 0.372
Predator 0.044| 0.169| 0.169|-0.382| 0.282| 0.359| 0.003| 0.386| 0.606
Herbivore 0.386| 0.223|-0.313|-0.296| 0.040| 0.404| 0.258| 0.104| 0.227 0.448
Pollinator 0.069| 0.360|-0.029|-0.400| 0.352| 0.427| 0.199| 0.269| 0.688 0.640 0.420
Parasitoid 0.610|-0.196|-0.197|-0.217| -0.322| 0.405|-0.051| 0.133| 0.198 0.244 0.325 0.254
Detritivore | 0.304|-0.101| 0.124[-0.327(-0.099| 0.416|-0.182| 0.309| 0.528 0.573 0.461 0.371 0.670
Sanguivore | -0.072| -0.236| -0.260| 0.568|-0.449|-0.511|-0.227|-0.473| -0.252 -0.133 -0.084 -0.077 0.033 -0.093
Ant 0.640|-0.214|-0.131|-0.295| -0.220| 0.465| 0.156| 0.217| 0.129 0.205 0.537 0.252 0.571 0.408 -0.049
Diversity 0.217| 0.407| 0.205|-0.829( 0.614| 0.780| 0.374| 0.655| 0.459 0.518 0.416 0.522 0.167 0.417 -0.679| 0.245
P-Values
Bl CcP co MS S %N | %Inv | FQl %F| |Predator|Herbivore |Pollinator|Parasitoid| Detritivore | Sanguivore | Ant
cpP 0.021
co 0.021| 0.021
MS 0.021| 0.021| 0.021
S 0.056| 0.000| 0.005| 0.000
%N 0.000| 0.097| 0.158| 0.000| 0.001
%Inv 0.132| 0.001| 0.001] 0.116| 0.029| 0.124
FQl 0.733| 0.470| 0.000| 0.000| 0.000| 0.000| 0.549
%F| 0.273| 0.532| 0.005| 0.023| 0.044| 0.019| 0.422| 0.009
Predator 0.768| 0.250| 0.250| 0.007| 0.052| 0.012| 0.985| 0.007| 0.000
Herbivore 0.007| 0.127| 0.030| 0.041| 0.789| 0.004| 0.076( 0.483| 0.121 0.001
Pollinator 0.641| 0.012| 0.843| 0.005| 0.014| 0.002| 0.176| 0.065| 0.000 0.000 0.003
Parasitoid 0.000| 0.183]| 0.179| 0.139| 0.026| 0.004| 0.729| 0.369| 0.178 0.095 0.024 0.081
Detritivore | 0.036| 0.493| 0.402| 0.024| 0.504| 0.003| 0.215| 0.033| 0.000 0.000 0.001 0.009 0.000
Sanguivore| 0.627| 0.106| 0.074| 0.000| 0.001| 0.000| 0.121| 0.001| 0.084 0.369 0.570 0.602 0.825 0.530
Ant 0.000{ 0.143| 0.376| 0.042| 0.133| 0.001| 0.290| 0.139| 0.382 0.162 0.000 0.083 0.000 0.004 0.739
Diversity 0.138| 0.004| 0.162| 0.000| 0.000| 0.000| 0.009| 0.000( 0.001 0.000 0.003 0.000 0.255 0.003 0.000(0.093

Table A.14 Spearman correlation rho and p-values overall. The rho values with significant p-values are bolded green

for positive correlations and red for negative correlations. Significant p-values are in red bold type. A p-value of 0.000
means < 0.001. (S = plant species richness, %N = percent native plant cover, %Inv = percent invasive plant cover, FQl =
Floristic Quality Index, Diversity = Shannon diversity of the insects at the morphospecies level).
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Spring Spearman Correlation Tables

Rho-Values
BI CcP co MSs S %N %Iinv | FQl %F| | Predator | Herbivore | Pollinator|Parasitoid| Detritivore | Sanguivore| Ant
CcP -0.333
co -0.333]-0.333
Ms -0.333]-0.333| -0.333
S -0.040| 0.436| 0.391|-0.787
%N 0.350( 0.200| 0.407(-0.957| 0.733
%lnv 0.102| 0.536|-0.588(-0.049| 0.134|-0.034
FQl -0.054| 0.156| 0.719]|-0.821| 0.789| 0.859(-0.350
%Fl -0.615| -0.389| 0.646| 0.358|-0.132|-0.268(-0.504| 0.131
Predator 0.403| 0.327|-0.211(-0.519| 0.465| 0.549| 0.470| 0.253|-0.458
Herbivore 0.640(-0.305|-0.636( 0.301|-0.419|-0.265| 0.459|-0.645| -0.479 0.333
Pollinator 0.396( 0.396|-0.335(-0.457| 0.424| 0.415| 0.574| 0.081|-0.628 0.722 0.424
Parasitoid 0.923(-0.248| -0.358( -0.317| 0.011| 0.384| 0.165|-0.034|-0.622 0.557 0.666 0.480
Detritivore | 0.758(-0.253|-0.253|-0.253| -0.082| 0.195|-0.053|-0.033|-0.423 0.112 0.403 0.239 0.498
Sanguivore| 0.808(-0.444|-0.363| 0.000|-0.202| 0.046| 0.147|-0.297|-0.421 0.205 0.681 0.216 0.750 0.488
Ant 0.496(-0.184| 0.212(-0.524| 0.365| 0.507|-0.109| 0.399|-0.145 0.605 0.109 0.260 0.430 0.418 0.151
Diversity 0.246| 0.554|-0.298(-0.502| 0.351| 0.466| 0.521| 0.208|-0.559 0.685 0.178 0.677 0.301 0.255 -0.162| 0.358
P-Values
Bl CcpP co MS S %N | %Inv | FQI %F| | Predator | Herbivore | Pollinator|Parasitoid | Detritivore | Sanguivore| Ant
CcP 0.207
co 0.207| 0.207
MS 0.207| 0.207| 0.207
S 0.884| 0.091| 0.134| 0.000
%N 0.184| 0.459| 0.117| 0.000| 0.001
%lnv 0.707| 0.032]| 0.017| 0.856| 0.620| 0.902
FQl 0.843| 0.563| 0.002| 0.000| 0.000{ 0.000( 0.184
%F| 0.011] 0.137| 0.007| 0.174| 0.625| 0.315| 0.047| 0.629
Predator 0.121| 0.217| 0.432| 0.040| 0.070| 0.027| 0.066| 0.344| 0.074
Herbivore | 0.008| 0.251| 0.008| 0.258| 0.106| 0.322| 0.073| 0.007| 0.060 0.207
Pollinator | 0.129| 0.129| 0.204| 0.075| 0.102| 0.110{ 0.020| 0.767| 0.009 0.002 0.102
Parasitoid | 0.000| 0.355| 0.173| 0.232| 0.966[ 0.142| 0.541| 0.900| 0.010 0.025 0.005 0.060
Detritivore | 0.001| 0.345| 0.345| 0.345| 0.764| 0.470| 0.846| 0.904| 0.102 0.681 0.121 0.373 0.050
Sanguivore| 0.000| 0.085| 0.167| 1.000| 0.453| 0.864| 0.586| 0.265| 0.104 0.447 0.004 0.423 0.001 0.055
Ant 0.051| 0.495| 0.430| 0.037| 0.165| 0.045| 0.688| 0.126| 0.593 0.013 0.687 0.331 0.096 0.107 0.577
Diversity 0.358| 0.026| 0.262| 0.048| 0.183| 0.069| 0.038| 0.440| 0.024 0.003 0.510 0.004 0.258 0.340 0.550| 0.174

Table A.15 Spearman correlation rho and p-values for spring dataset. See Table A.14 for interpretation.
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Summer Spearman Correlation Tables

Rho-Values
Bl CcP co MS S %N | %Inv | FQI %Fl |Predator|Herbivore | Pollinator|Parasitoid| Detritivore | Sanguivore| Ant
CcP -0.333
co -0.333(-0.333
MSs -0.333[-0.333|-0.333
S -0.271| 0.657| 0.343|-0.729
%N 0.537| 0.256| 0.155|-0.948| 0.523
%lInv 0.436| 0.505|-0.502|-0.439| 0.401| 0.451
FQl 0.065| 0.095| 0.685|-0.846| 0.720| 0.689( 0.122
%F| -0.556| 0.696| 0.210(-0.350| 0.574| 0.265|-0.036| 0.239
Predator -0.245| 0.673|-0.061|-0.367| 0.540| 0.286| 0.261| 0.248| 0.704
Herbivore 0.661| 0.244|-0.576|-0.329(-0.063| 0.475| 0.546(-0.009|-0.186 0.144
Pollinator |-0.220| 0.879|-0.228|-0.432| 0.547| 0.422| 0.299| 0.136| 0.818 0.787 0.278
Parasitoid 0.714]-0.238|-0.261|-0.215[-0.161| 0.383| 0.268| 0.060|-0.324 -0.175 0.243 -0.145
Detritivore | 0.026| 0.131| 0.235[-0.392| 0.311| 0.392| 0.068| 0.390| 0.232 -0.096 0.015 0.075 0.267
Sanguivore | -0.573| -0.043| -0.215| 0.831|-0.442|-0.867|-0.478|-0.610| -0.024 0.054 -0.254 -0.111 -0.408 -0.342
Ant 0.722|-0.214|-0.151|-0.357|-0.187| 0.504| 0.237| 0.263|-0.356 -0.127 0.665 -0.071 0.539 0.099 -0.354
Diversity 0.237| 0.479| 0.247|-0.963| 0.789| 0.902| 0.550( 0.755| 0.450 0.416 0.312 0.518 0.124 0.425 -0.817| 0.213
P-Values
Bl CcP co MS S %N | %Inv | FQI %F| | Predator | Herbivore | Pollinator|Parasitoid | Detritivore | Sanguivore| Ant
CcP 0.207
co 0.207| 0.207
MS 0.207| 0.207| 0.207
S 0.309| 0.006| 0.193| 0.001
%N 0.032] 0.339| 0.565| 0.000| 0.037
%Inv 0.092| 0.046| 0.047| 0.089| 0.123| 0.080
FQl 0.810| 0.726| 0.003| 0.000| 0.002| 0.003| 0.653
%F| 0.025| 0.003| 0.436| 0.184| 0.020| 0.321| 0.894| 0.373
Predator 0.361| 0.004| 0.822| 0.162| 0.031| 0.283| 0.330| 0.354| 0.002
Herbivore 0.005| 0.362| 0.020| 0.213| 0.815| 0.063| 0.029| 0.972| 0.490 0.594
Pollinator 0.413| 0.000| 0.396| 0.095| 0.028| 0.104| 0.261| 0.615| 0.000 0.000 0.296
Parasitoid 0.002| 0.375| 0.329| 0.424| 0.552| 0.143| 0.315| 0.825| 0.220 0.516 0.365 0.591
Detritivore | 0.923| 0.629| 0.380| 0.133| 0.241| 0.133| 0.804| 0.136| 0.388 0.723 0.956 0.781 0.318
Sanguivore| 0.020| 0.874| 0.424| 0.000| 0.087| 0.000| 0.061| 0.012| 0.931 0.843 0.343 0.681 0.116 0.195
Ant 0.002| 0.425| 0.576| 0.175| 0.488| 0.047| 0.378| 0.325| 0.176 0.640 0.005 0.793 0.031 0.714 0.179
Diversity 0.376| 0.060| 0.357| 0.000| 0.000| 0.000( 0.027| 0.001| 0.080 0.109 0.239 0.040 0.647 0.101 0.000| 0.429

Table A.16 Spearman correlation rho and p-values for summer dataset. See Table A.14 for interpretation.
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Fall Spearman Correlation Tables

Rho-Values
Bl CcP co MS S %N | %Inv | FQI %F| | Predator | Herbivore | Pollinator|Parasitoid | Detritivore | Sanguivore| Ant
CcP -0.333
co -0.333(-0.333
MS -0.333|-0.333|-0.333
S -0.516| 0.559| 0.542|-0.585
%N 0.591| 0.270| 0.082|-0.944| 0.331
%Inv 0.039| 0.453|-0.359|-0.133| 0.035| 0.208
FQl 0.136| 0.073| 0.639|-0.848| 0.660| 0.717(-0.218
%F| 0.392|-0.178| 0.490|-0.704| 0.259| 0.669(-0.020( 0.600
Predator 0.136|-0.030| 0.438|-0.543| 0.416| 0.442|-0.080( 0.575| 0.683
Herbivore 0.257| 0.556|-0.125|-0.688| 0.459| 0.696| 0.112| 0.414| 0.483 0.413
Pollinator 0.566|-0.281| 0.376|-0.661| 0.132| 0.664|-0.104| 0.622| 0.772 0.728 0.372
Parasitoid 0.958|-0.311|-0.296 -0.350( -0.437| 0.595| 0.071| 0.192| 0.298 0.089 0.203 0.479
Detritivore | 0.621|-0.236| 0.278|-0.664| 0.044| 0.741|-0.051| 0.543| 0.811 0.533 0.446 0.728 0.559
Sanguivore | -0.079| -0.370| -0.364| 0.813|-0.645|-0.706(-0.263| -0.708| -0.522 -0.414 -0.485 -0.456 -0.106 -0.416
Ant 0.959]-0.357|-0.211|-0.390( -0.419| 0.619| 0.026| 0.186| 0.580 0.325 0.347 0.685 0.881 0.743 -0.123
Diversity 0.205| 0.310| 0.445|-0.960| 0.634| 0.862| 0.186| 0.828| 0.723 0.616 0.587 0.690 0.196 0.650 -0.859| 0.296
P-Values
BI cp co MS S %N | %Inv | FQI %F| | Predator | Herbivore | Pollinator|Parasitoid | Detritivore | Sanguivore| Ant
CcP 0.207
co 0.207| 0.207
MS 0.207| 0.207| 0.207
S 0.041| 0.024| 0.030| 0.017
%N 0.016| 0.311| 0.762| 0.000| 0.211
%lnv 0.886| 0.078| 0.172| 0.623| 0.899| 0.440
FQl 0.617| 0.788| 0.008| 0.000| 0.005| 0.002| 0.417
%F| 0.133| 0.510| 0.054| 0.002| 0.333| 0.005| 0.942| 0.014
Predator 0.616| 0.912| 0.090| 0.030| 0.109| 0.086| 0.768| 0.020| 0.004
Herbivore 0.337| 0.025| 0.645| 0.003| 0.074| 0.003| 0.679| 0.111| 0.058 0.112
Pollinator 0.022| 0.291| 0.151| 0.005| 0.627| 0.005| 0.703| 0.010| 0.000 0.001 0.156
Parasitoid 0.000| 0.241| 0.266| 0.183| 0.091| 0.015| 0.793| 0.477| 0.262 0.743 0.451 0.060
Detritivore | 0.010| 0.380| 0.297| 0.005| 0.872| 0.001| 0.853| 0.030| 0.000 0.033 0.083 0.001 0.024
Sanguivore| 0.772| 0.158| 0.166| 0.000{ 0.007| 0.002| 0.324| 0.002| 0.038 0.111 0.057 0.076 0.697 0.109
Ant 0.000| 0.174| 0.432| 0.135| 0.106| 0.011| 0.923| 0.490| 0.019 0.220 0.187 0.003 0.000 0.001 0.649
Diversity 0.446| 0.243| 0.084| 0.000| 0.008| 0.000( 0.491| 0.000| 0.002 0.011 0.017 0.003 0.466 0.006 0.000| 0.265

Table A.17 Spearman correlation rho and p-values for fall dataset. See Table A.14 for interpretation.
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Spring NMDS
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Figure A.1 Spring NMDS of Insect Morphospecies Abundance. K = 2. Environmental variables shown in relation to insect
samples are percent native species cover (N), floristic quality index (FQI), percent flowering (Fl), plant species richness
(S), and insect morphospecies Shannon Diversity (Diversity). The length of each environmental variable’s arrow
corresponds to the strength of the relationship.
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Summer NMDS
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Figure A.2 Summer NMDS of Insect Morphospecies Abundance. K = 2. Environmental variables shown in relation to
insect samples are percent native species cover (N), floristic quality index (FQI), percent flowering (Fl), plant species
richness (S), and insect morphospecies Shannon Diversity (Diversity). The length of each environmental variable’s
arrow corresponds to the strength of the relationship.
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Fall NMDS

@® s
. @
o @ ® ® @ o
s @ co
@
@ wms
Diversity
o | @
=
& @
(=]
=
@
w
2
. Fal
@
. Fl N
o | @
v T T T T T
-1.0 05 0.0 0.5 1.0
NMDS1

Figure A.3 Fall NMDS of Insect Morphospecies Abundance. K = 2. Environmental variables shown in relation to insect
samples are percent native species cover (N), floristic quality index (FQI), percent flowering (Fl), plant species richness
(S), and insect morphospecies Shannon Diversity (Diversity). The length of each environmental variable’s arrow
corresponds to the strength of the relationship.
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