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Abstract: In this paper, an integrated methodology is developed to determine optimum areas for
Photovoltaic (PV) installations that minimize the relevant visual disturbance and satisfy spatial
constraints associated with land use, as well as environmental and techno-economic siting factors.
The visual disturbance due to PV installations is quantified by introducing and calculating the “Social
Disturbance” (SDIS) indicator, whereas optimum locations are determined for predefined values
of two siting preferences (maximum allowable PV locations—grid station distance and minimum
allowable total coverage area of PV installations). Thematic maps of appropriate selected exclusion
criteria are produced, followed by a cumulative weighted viewshed analysis, where the SDIS indicator
is calculated. Optimum solutions are then determined by developing and employing a Genetic
Algorithms (GAs) optimization process. The methodology is applied for the municipality of La
Palma Del Condado in Spain for 100 different combinations of the two siting preferences. The
optimization results are also employed to create a flexible and easy-to-use web-GIS application,
facilitating policy-makers to choose the set of solutions that better fulfils their preferences. The GAs
algorithm offers the ability to determine distinguishable, but compact, regions of optimum locations
in the region, whereas the results indicate the strong dependence of the optimum areas upon the two
siting preferences.

Keywords: photovoltaic energy; geographic information system; site selection; visual disturbance;
optimization; genetic algorithms; web-GIS application

1. Introduction

The solar Photovoltaic (PV) market presents one of the most dynamic renewable
energies markets, and its growth is expected to rise [1]. Due to their environmental and
economic benefits, PV plants provide energy for numerous applications, in addition to the
electrical grid supply, such as solar irrigation [2], seawater desalination [3], groundwater
pumping [4], as well as the combined production of agricultural crops and power [5].
The technology of PVs is continuously being developed to improve solar cells efficiency
(e.g., [6,7]). Regarding the deployment of PVs in residential areas, many researchers have
developed and applied various relevant tools and methods, including, for example, tools
that provide access to PV datasets [8] and advanced integrated approaches for rooftop solar
energy assessments (e.g., [9–11]). Furthermore, there is a number of studies focusing on PV
plants’ allocation in rural areas (e.g., [12,13]).

When considering the site selection criteria for installing PV plants, it is necessary to
take into consideration the associated potential risks (however small they might be) [14,15],
while at the same time setting the regulations that will not prevent the PV plants’ further ex-
pansion. Authorities often regulate the PV plants’ deployment based on environmental and
social criteria [16]. As an inaccurate sitting of PV plants might lead to public oppositions, it
is necessary, when proposing regulations, to take into account all those parameters that
will make citizens feel safe and, thus, will increase public acceptance [17–19]. Specifically,
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in Spain, where the methodology of this paper is applied, there is an ongoing discussion
about proposing and adopting the best regulations [20,21], as the Spanish solar energy
market, despite its early development, had been stable through the previous decade [22,23].
One of the most important aspects for legal regulations is simplicity, as regions with lower
administrative complexity are likely to have better PV ratios [24].

A way to increase the public acceptance of PVs is to decrease the associated social dis-
turbance by avoiding the placement of PVs in areas of high visibility. This, in turn, requires
the implementation of a viewshed analysis within the site selection process. The latter
analysis enables the identification of geographical areas or landscape components/objects
(viewsheds), which can be seen from one observer based on the observer’s spatial location
and the terrain elevation. In its simplest form, the so-called “binary” viewshed analysis,
it produces a raster map with Boolean values [0, 1], where the visibility of a pixel from
the observer is denoted by “1” and non-visibility by “0” [25,26]. Up to now, numerous
variants of the aforementioned traditional viewshed analysis have been developed and
applied. These include, for example, the cumulative viewshed analysis (e.g., [27]), where
the visibility of an object is quantified based on multiple, different viewpoint locations
(observers), as well as the fuzzy viewshed analysis (e.g., [25,28–30]), which determines
the likelihood of an object to be seen, while accounting for the distance-decay effect in
visibility. The latter effect can be also considered by performing a “weighted” viewshed
analysis, where weighting factors are assigned to different visibility distances based on
various distance-decay functions (e.g., [31,32]).

Even though viewshed analysis models have been criticized in terms of their accuracy
(e.g., [33,34]), they remain a very popular tool in Geographic Information Systems (GIS) for
territorial planning and landscape analysis. Accordingly, there are numerous studies of
viewshed analysis for various landscape components (e.g., [26,31,35,36]), whereas, up to
now, only a few focus on PV site selection [32,37]. Specifically, in [37], ranking of feasible
areas for new PV installations according to their visibility was realized by conducting a
fuzzy viewshed analysis, which enables the calculation of the maximum number of hours
in a mean day in which the PV plant may be viewed by each potential observer. The
proposed methodology was applied for two different Spanish municipalities. Zorzano-
Alba et al. [32] developed a GIS-based methodology to identify areas for new PV plants in
regions with special landscape or cultural protection that will have low or high visibility
for a set of moving observers, with an application to the La Rioja region in Northern
Spain. Visibility was quantified by calculating the “Global Accumulated Perception Time”
variable, which was defined as the cumulative total hours in a year in which the proposed
PV installation can be seen by observers moving along roads/paths in the area under
investigation. Logarithmic functions were used to account for the distance-decay effect.

The utilization of a viewshed analysis within the PV plants’ site selection facilitates
the objective identification and/or ranking of suitable, in terms of visibility, areas. Moving
one step further, a viewshed analysis could be combined with an adequate optimization
method, such as Genetic Algorithms (GAs), to determine, in a mathematically integrated
manner, areas for PV installations that minimize visibility and satisfy potential spatial
constraints imposed by various siting factors. GAs correspond to a characteristic evolution-
ary algorithm that mimics the process of natural evolution according to the “survival of
the fittest” rule by deploying relevant computational operators [38–40]. Up to now, GAs
have been widely used by various researchers to solve other forms of PVs allocation/site
selection problems, including, for example: the optimum allocation of PVs in terms of mini-
mizing power losses [41], the determination of optimum PV plants’ locations according to
the seasonal and diurnal cycles related to the system load and solar generation profiles [42],
the optimum placement of hybrid PV–wind systems in terms of minimizing costs [43], as
well as the determination of sustainable geographical clusters (territories) to satisfy energy
demands by solar and wind energy exploitation [44].

In the present paper, an integrated methodology is developed to identify optimum
areas for PV installations on municipality scale that minimize the relevant visual distur-
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bance, while satisfying, at the same time, spatial constraints associated with land use, and
environmental and techno-economic siting factors. The visual disturbance of the public due
to PV installations is quantified by introducing and calculating an indicator called herein
the “Social Disturbance” (SDIS) indicator. The largest the SDIS indicator for an area is, the
higher the visibility of this area will be, advocating higher visual disturbance of the public
(i.e., social disturbance) due to PV installations in this area. The proposed methodology
is applied for the municipality of La Palma Del Condado located in in the province of
Huelva, Andalucia, Spain. Initially, thematic maps of exclusion siting criteria with their
incompatibility zones and a Digital Surface Model (DSM) of the region are developed using
GIS. A cumulative weighted viewshed analysis follows to calculate the SDIS indicator.
Successively, the optimization problem is solved by developing a GAs-driven optimization
process, where optimum locations are determined for predefined values of the following
two siting preferences: (a) the maximum allowable PV locations—grid station distance;
and (b) the minimum allowable total coverage area of PV installations. By modifying the
values of the aforementioned preferences, different sets of optimum solutions are obtained.
These solutions are, finally, employed as a basis to create a flexible and easy-to-use web-GIS
application, facilitating policy-makers to choose the set of solutions that better fulfils their
preferences/strategies. The mitigation of social oppositions resulting from visual distur-
bances of PV installations presents an important factor that can contribute to the sustainable
site selection of these renewable energy systems. The present paper tackles this problem
and fills existing research gaps by: (a) explicitly formulating the PV site selection problem
as an optimization problem, where areas that minimize the PVs’ visual disturbance and
satisfy spatial constraints are being sought; and (b) proposing an integrated methodology to
solve the aforementioned optimization problem, where GIS databases, viewshed analysis,
and GAs are efficiently combined.

The remainder of the paper is organized as follows: in Section 2, the study area is
presented. Section 3 includes a detailed description of the components of the developed
methodology. The results of the present paper are presented and discussed in Section 4,
and, finally, in Section 5, the concluding remarks and key findings of this investigation
are cited.

2. Study Area

The region under investigation corresponds to the municipality of La Palma Del Con-
dado located in Andalucia, Spain, in the province of Huelva (Figure 1a). The municipality
has (2021) a population of approximately 10,700 people [45] and covers an area of 60.5 km2.
The study area (Figure 1b) consists of agricultural lands, including vineyards that are critical
for the local economy, residences, and urban areas, main roads, and railways. Furthermore,
it is surrounded by Natura 2000 areas. Specifically, the Rio Tinto River (Figure 1b), as well
as the wider Natura 2000 zone in the northern part of the area, are famous attractions to
tourists and scientists because of the special characteristics of their aquatic environment.

High temperatures and solar radiation values make the study area favorable in terms
of PV productivity [46]. It should be mentioned, however, that, currently, a specific spatial
planning framework for deploying PVs in the region does not exist and the municipality
adopts general siting criteria applicable to any type of structure (e.g., buildings) for new PV
installations. Along these lines, the municipality targets to develop a relevant framework
that will make it possible for investors to install PVs, while, at the same time, respecting
the physical and the socio-economic environment.
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Figure 1. (a) Location of the study area in the wider area of Andalusia, Spain; (b) boundaries of the
study area.

3. Methodology

The developed methodology in this paper aims at identifying optimum areas for PV
installations on municipality scale that minimize the relevant visual disturbance, quantified
by the SDIS indicator, and satisfy spatial constraints related to land use, environmental, as
well as to techno-economic siting factors. By minimizing the SDIS indicator, mitigation of
potential social oppositions and negative impacts on land activities (e.g., tourism, residency
construction) can be achieved.

The whole methodology is shown schematically in Figure 2. Initially, a GIS database
is created, including thematic maps of exclusion criteria with their incompatibility zones
(spatial constraints), and a DSM of the region. The latter model is successively deployed
in order to perform a cumulative weighted viewshed analysis, where viewshed maps are
created and the SDIS indicator is calculated and mapped. The spatial constraints and the
SDIS maps are, then, used to perform a GAs-driven optimization process, where optimum
locations are determined for predefined values of two siting preferences corresponding
to: (a) the maximum allowable PV locations—grid station distance; and (b) the minimum
allowable total coverage area of PV installations. By modifying the values of the afore-
mentioned siting preferences, different sets of optimum solutions are obtained, which
are, finally, used as a basis to create a web-GIS application. The latter tool enables the
visualization of PV plants’ optimum locations in the study area for different bounds of the
PV locations—grid station in-between distance and of the PV locations’ total coverage area,
facilitating policy-makers to choose a set of solutions that fulfils better their preferences on
the above factors. In the following sections, the components of the present methodology
are described in detail.
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3.1. Development of the GIS Database

In order to solve the examined siting optimization problem, the development of an
adequate GIS database is initially required. This database includes: (a) thematic maps of
exclusion criteria (with their incompatibility zones) that impose spatial limitations for the
PV installations in the study area based on utilization restrictions, and environmental and
techno-economic considerations; and (b) a DSM that is deployed in the preceding viewshed
analysis. In the present analysis, five (5) exclusion criteria have been taken into account
(Table 1).

Table 1. Exclusion criteria and their incompatibility zones considered in the present analysis.

ID Criterion Incompatibility
Zones Spatial Data Source

EC1
Distance from

environmentally protected
areas (Natura 2000 areas)

≤150 m [47]

EC2 Distance from major roads ≤100 m La Palma Del Condado
municipality (personal

communication)
EC3 Distance from railway

network ≤50 m

EC4 Land use Non-agricultural
areas and vineyards

EC5 Slope of terrain ≥5% [48]

EC1 contributes to mitigate the potential environmental risk associated with PV
installations. By applying this criterion, all Natura 2000 zones of recognized natural and
ecological value (e.g., [15]) are not considered suitable for the deployment of PVs. The same
holds true for the areas within a distance of 150 m from the aforementioned zones. This
distance has been selected based on relevant limits available in the literature (e.g., 500 m
in [49,50], 100 m in [51]), taking into account the size of the examined study area.

EC2 and EC3 are considered for safety and technical reasons. EC2 excludes the existing
major roads and all areas within a distance of 100 m from them, which has been defined
according to the relevant limits found in the literature (e.g., [49,52]). In a similar manner,
EC3 excludes the existing railway network and a 50 m buffer safety zone from it. The latter
limit has been selected according to [53].

Regarding EC4, all non-agricultural areas (e.g., urban areas, residences etc.) are ex-
cluded from the optimization process. The same holds true for vineyards, since, according
to the municipality authorities, they are considered extremely important for the local econ-
omy.

As for EC5, the deployment of PVs in areas with large terrain slopes leads to high
investment costs. Accordingly, an upper bound of the terrain slope is taken into account
for technical–economic reasons. A wide range of the aforementioned bound can be found
in the literature: 2% in [46], 15% in [15], and 25% in [51,54]. In the present paper, the value
of 5% has been selected.

All spatial data related to the exclusion criteria were collected from various sources
(Table 1), and they were appropriately processed to develop the GIS database and the
relevant thematic maps using QGIS. In the case of EC5, the gradient field consideration
requires an adequate Digital Terrain Model (DTM). For this purpose, Lidar data have been
used and processed using R package, “lidR” [55]. The developed DTM model was inserted
in QGIS, and the thematic map of EC5 (raster format) was created using the “slope” function.
The high accuracy of the produced map (the Lidar data accuracy was 1.5 points/m2) can
result in standalone points with very large slope terrain values (representing, for example,
a tree). To reduce the effect of these outliers, the average slope of the polygons examined
was calculated. If this average value was smaller than 5%, the polygon was considered
as a potential area for PV installations in terms of EC5. It is noted that Lidar data were
also used to create the DSM model required in the viewshed analysis, including both the
ground elevation and the objects’ elevations (buildings, trees etc.).
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Finally, it should be mentioned that the exclusion criteria of Table 1 have been selected
by taking into account the special features of the examined region, although numerous
other criteria can be found in the relevant literature. For example, historical heritages or
archeological sites have not been considered, since they do not exist in the study area. The
altitude has also been omitted, since the maximum altitude of the examined region (<200 m)
is far away from the upper bound of 1500–2000 m found in the literature [15]. In a similar
manner, solar radiation (e.g., [46]) and temperature (e.g., [56]) have not been considered as
exclusion criteria, since the limited area of the municipality examined leads to negligible
variations of the two aforementioned quantities.

3.2. Vieswhed Analysis

In the present investigation, a cumulative weighted viewshed analysis is performed
by aggregating the visibility from multiple observers, while taking into account the effect
of the distance between the observers and the locations of the PV installations. The overall
aim of this analysis, which is realized using the “QGIS visibility analysis” plugin [57], is
the quantification and the mapping of the SDIS indicator in the study area.

Starting with the observers, two categories of observers have been taken into account
corresponding to residents and drivers. Thus, the spatial placement of the observers has
been performed according to the residences’ (buildings) location and the roads’ traffic,
respectively. The residences have been represented as spatial polygons (based on the
relevant data obtained from the municipality), and 10% of them were randomly chosen
by applying a uniform distribution function to the polygons’ IDs. Successively, each of
the selected polygons has been replaced by a point in QGIS representing one observer.
Regarding the roads, these spatial entities have been divided into major and minor ones
based on their traffic characteristics. In the case of the major roads, 10% of the daily traffic
was chosen for reasons of conciseness. This percentage was then divided over the total
length of each road, leading to 1 observer per 50 m. Due to the absence of data for the minor
roads, a proportion of 1/5 was chosen between the major and the minor roads, resulting
in 1 observer per 250 m in the latter roads’ category. The railroad in the area was treated
similarly to the major roads (i.e., 1 observer per 50 m). Furthermore, some extra observers
not belonging to the aforementioned categories were placed in the Natura 2000 region,
since this zone and especially the Rio Tinto River attract many visitors due their great
environmental importance. The location of the observers in a region around the La Palma
Del Condado city is shown in Figure 3.

Regarding the distance between the observers and the locations of the PV installations,
the closer the distance is, the higher the disturbance perceived by the observers will be.
The concept presented is similar to “utility functions” that are often used in economics [58].
Let us consider M different classes of viewshed maps, with an jth, j = 1, . . . , M, class
corresponding to a predefined maximum visibility distance, rj. By weighting and aggregat-
ing the aforementioned viewshed maps, the disturbance, DISi,pix, of an ith, i = 1, . . . , N,
observer, relevant to a point/pixel, pix, can be quantified according to Equation (1):

DISi,pix =
M

∑
j

cjVi
j,pix (1)
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In the above equation, cj, j = 1, . . . , M, corresponds to the weight of the jth viewshed
class defined below, whereas Vi

j,pix, i = 1, . . . , N, j = 1, . . . , M, is equal to 1 if the examined
point/pixel for the jth viewshed class can be seen by the ith observer, or equal to 0 if the
opposite holds true.

By summing up the values of DISi,pix for all the N observers, the SDIS indicator
for each point/pixel, SDISpix, is obtained (see Equation (2) below). SDISpix for all
points/pixels in the study area forms the SDIS map.

SDISpix =
N

∑
i

DISi,pix (2)

The question that arises is how the cj, j = 1, . . . ,M, values are determined. To answer
this question, it is necessary to take into consideration two factors. The first one is that the
disturbance of an observer decreases in a non-linear way with respect to the distance. The
non-linear relationship between an object and an observer has been already indicated in
the literature [31,59,60]. The second factor is that the disturbances of all the observers will
be aggregated; therefore, the principle of additivity needs to be fulfilled, in a way that the
final SDIS map will offer trustworthy results. To fulfil these two requirements, Equation (3)
is introduced to calculate cj, j = 1, . . . , M:

cj = logy(rM)− logy
(
rj
)
+ 1, (3)

where rM is the maximum distance that an observer can see in the case of the M class
viewshed (largest maximum distance among all classes), whereas the value of “+1” is
used in order to consider the M class as the reference class. For applying Equation (3), the
parameter y needs to be defined, having in mind that the smaller the y value is, the more
emphasis will be given on objects cited close to an observer. In the present paper, y has
been taken as equal to e and, thus, cj, j = 1, . . . , M, is finally calculated suing Equation (4)
as follows:

cj = ln(rM)− ln
(
rj
)
+ 1 (4)
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In total, 10 classes of viewshed maps have been considered with rj and cj, j = 1, . . . ,
10, values shown in Table 2. It can be seen that the increase of rj leads to a nonlinear
decrease of cj. The maximum distance of the 10th class, r10, is of high importance, since
an area located at distance from an observer larger than r10 does not disturb the observer.
The intermediate classes support a better discretization of the distances, and, furthermore,
they introduce some extra importance to the smaller distances. The reader should have in
mind that as the weighted viewshed maps are aggregated (Equation (1)), for a PV placed
between 0 m and 100 m from an observer, the DISi,pix will be equal to 28.859 and not equal
to 4.912. Figure 4 includes two cumulative viewshed maps for r1 = 100 m and r6 = 1000 m,
assuming c1 = c6 =1 in a region around the La Palma Del Condado city. Cumulative
weighted viewshed maps, along with the final DSIS map, are cited and discussed in the
Results section.

Table 2. rj and cj values of the 10 viewshed classes considered in the present analysis.

j 1 2 3 4 5 6 7 8 9 10

rj (m) 100 200 300 400 500 1000 1500 2000 3500 5000
cj 4.912 4.219 3.813 3.526 3.303 2.609 2.204 1.916 1.357 1.000
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Figure 4. Cumulative (not weighted) viewshed maps in a region around the La Palma Del Condado
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the most visible areas).

3.3. Optimization Process

The present GAs-driven optimization process aims at identifying optimum areas
for PV installations on municipality scale that minimize the SDIS indicator and satisfy
spatial constraints introduced with the exclusion criteria of Table 1. Optimum locations are
determined for predefined values of two siting preferences: (a) the maximum allowable
PV locations—grid station distance; and (b) the minimum allowable total coverage area of
PV installations.

In order to form the examined optimization problem, SP is defined as a spatial entity
corresponding to a spatially projected vector (polygon or spatial polygon data frame).
The overall region, OR, examined (municipality) is divided into K spatial entities; namely,
OR = {SP1, . . . , SPk, . . . , SPK}, where |K| is the cardinality of the OR superset. Each SPk,
k = 1, . . . , K, has a set of spatial and non-spatial attributes, ATk, defined as:

ATk =
{

ATk,use, ATk,s, ATk,SDIS, ATk,area, ATk,DG, ATk,set
}

(5)
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In Equation (5), ATk,use includes the land use information of SPk related to EC4 (Table 1),
ATk,s is the average slope terrain gradient (%) of SPk related to EC5 (Table 1), ATk,SDIS
corresponds to the SDIS of SPk, ATk,area is the coverage area (m2) of SPk, whereas ATk,DG
is the distance (m) between the electrical grid station and the most distant point of SPk.
Furthermore, ATk,set represents the set (category) where an SPk belongs, and can take
the labelled values of “A”, “B” or “C” according to Table 3. Set A includes the optimum
solutions; namely, all SPs that minimize the DSIS indicator, satisfy none of the exclusion
criteria, and are consistent with the two siting preferences. Set C includes SPs that satisfy
any of the EC1, EC2, or EC3 exclusion criteria, while, at the same time, correspond to
pure non-agricultural areas (EC4). Finally, in set B, SPs that do not belong to either A or
B sets are included. Specifically, set B contains SPs that satisfy only EC5 and/or EC4 (i.e.,
they correspond to vineyards). Accordingly, in this set, areas that are not eligible for PV
installations only due to economic reasons are classified. Furthermore, it contains SPs that
although do not satisfy any of the exclusion criteria, they do not correspond to solutions
that lead to minimum DSIS values and/or are consistent with the two siting preferences.

Table 3. Classification of SPs into sets.

No. Feature Set A Set B Set C

1 EC1 satisfaction

No No
No Yes2 EC2 satisfaction

3 EC3 satisfaction

4 EC4 satisfaction Yes (vineyards)
Partial (only

non-agricultural areas
are included)

5 EC5 satisfaction Yes Not examined

6 Minimum SDIS indicator
Yes No Not examined Not examined7 Distance from grid station smaller than

a predefined upper bound

8 PV locations’ total coverage area larger
than a predefined low bound

Based on all the above, the GAs optimization process developed herein seeks to
determine the SPs that belong to set A by matching and classifying each SPk, k = 1, . . . , K,
to one of the A, B, or C sets. This problem has many similarities with graph theory and
matching problems [61], as the SPs will be matched to a set according to their attributes. The
aforementioned matching and classification are implemented in two successive stages. In
the first stage, SPs that satisfy EC1–EC4 are determined by deploying the relevant data and
the thematic maps of the GIS database, and by performing the required spatial intersections
using a relevant R package. If, for example, an SPk intersects with the 150 m buffer of an
environmentally protected area (EC1), then ATk,set = “C”. Similarly, for EC4, if ATk,use 6=
“agricultural”, then ATk,set = “C”. The intersections are performed in each GAs iteration
following an approach that will be presented later in this section. The aforementioned SPs
are classified to the C set and are subtracted from the OR superset. Each SPk /∈ C is taken
into account in the second stage, where the GAs algorithm determines the elements (SPs)
of the A set according to Table 3. Thus, the objective function of the present optimization
problem is defined as follows:

minimize
SPk∈Q

∑
SPk∈A

ATk,SDIS (6)

where Q = A ∪ B.
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Equation (6) implies that the GAs algorithm seeks for optimum SPs in terms of
minimizing the sum of their SDIS indicators. Furthermore, the solution is subjected to the
following constraints:

ATk,use = “agricultural” & ATk,use 6= “vineyard”, for any SPk ∈ Q (7)

ATk,s ≤ 5%, for any SPk ∈ Q (8)

ATk,DG ≤ DGmax, for any SPk ∈ Q (9)

∑
SPk∈Q

ATk,area ≥ Areamin (10)

In Equation (9), DGmax denotes the maximum allowable distance from the grid station
for installing PVs, whereas in Equation (10), Areamin corresponds to the minimum allowable
total coverage area of PV installations. By setting different values for DGmin and Areamin
based on relevant preferences, different optimum solutions can be obtained. Having solved
the optimization problem described by Equations (6)–(10) and, thus, having determined
the SPs that belong to the A set, the remaining SPs are classified to set B.

In order to label the ATk,use attribute (Equation (7)), the land use data included in the
GIS database are used. Similarly, by deploying the slope terrain raster map of the GIS
database, the ATk,s attribute (Equation (8)) is quantified and is taken as equal to the average
value of the raster pixels that fall inside an SP. As for the ATk,SDIS attribute (Equation (6)),
the final SDIS raster produced from the viewshed analysis is “clipped” using the spatial
features of an SP as a “mask”. The masked SDISpix (Equation (2)) values are then summed
up to quantify ATk,SDIS.

In order to solve the present optimization problem, GAs are deployed, which are
numerically realized using the R package, “GA” [62]. GAs are based on the iterative
generation of populations of chromosomes, representing possible optimum solutions based
on the “survival of the fittest” rule [38–40]. Accordingly, the generation of populations of
possible SPs with ATk,set = “A” could have been considered. This approach, however, would
result to extensively sparse optimum solutions within the examined region, which, in turn,
would be difficult to be realized in terms of regional planning. For this reason, another
approach is deployed in the present paper, facilitating the formation of compact regions
with SPk ∈ A. Specifically, a chromosome is represented by two distinctive triangles, which
intersect with and include a number of SPs (Figure 5). At each iteration, the GAs algorithm
initially finds the SPs of the triangles that belong to the C set and excludes them from
further analysis. For the remaining SPs of the two triangles, Equations (6)–(10) are then
applied, and the SPs satisfying those equations (i.e., SPs∈A) correspond to a potential
optimum solution.

A X − Y grid of 10 m is deployed in the area that has the dimensions, 11.227 km ×
14.593 km. Considering that 210 = 1024 and 211 = 2048, any of the X, Y coordinates require
11 bits to be represented in a binary form. Accordingly, 22 bits are required to create a point,
66 to create one triangle, and 132 to create two triangles. The latter 132 bits correspond to
a chromosome (i.e., a possible solution to the optimization problem containing SPs that
belong to the A set). Three-hundred generations of a population of 125 chromosomes each
have been used. The mutation and the crossover probability have been set to 35% and 85%,
respectively, determining which of the chromosomes will survive to the next generation.
Elitism has been also deployed, letting the best five chromosomes survive always to the
next generation. Penalties with successively decreasing values are assigned in the algorithm
in a sequential manner as follows: (i) for points or triangle areas that fall outside of the
examined region, as well as for triangles that intersect with each other (penalties with the
largest values); (ii) for limitations resulting from the exclusion criteria of Table 1 related to
set C (penalties with intermediate values); and, finally, (iii) for limitations resulting from
the constraints described by Equations (7)–(10) (penalties with the smaller values). In this



Sustainability 2022, 14, 12602 11 of 19

way, the algorithm efficiently promotes the chromosomes that fulfill as many requirements
as possible.

Sustainability 2022, 14, 12602 11 of 21 
 

 
 

regions with 𝑆𝑃௞ ∈ 𝐴. Specifically, a chromosome is represented by two distinctive trian-
gles, which intersect with and include a number of 𝑆𝑃𝑠 (Figure 5). At each iteration, the 
GAs algorithm initially finds the 𝑆𝑃𝑠 of the triangles that belong to the 𝐶 set and ex-
cludes them from further analysis. For the remaining 𝑆𝑃𝑠 of the two triangles, Equations 
(6)–(10) are then applied, and the 𝑆𝑃𝑠 satisfying those equations (i.e., 𝑆𝑃𝑠 ∈ 𝐴) corre-
spond to a potential optimum solution. 

 
Figure 5. One of the two triangles of a chromosome, intersecting with and including a number of 𝑆𝑃𝑠 (red blocks). 𝑋௜, 𝑌௜, 𝑖 = 1, 2, 3, are the spatial coordinates of the triangle’s vertices in the de-
ployed 𝑋 − 𝑌 grid. Red lines correspond to minor roads, the pink line represents the railway, and 
the background is the SDIS raster. 

A 𝑋 − 𝑌 grid of 10 m is deployed in the area that has the dimensions, 11.227 km x 
14.593 km. Considering that 210 = 1024 and 211 = 2048, any of the 𝑋, 𝑌 coordinates require 
11 bits to be represented in a binary form. Accordingly, 22 bits are required to create a 
point, 66 to create one triangle, and 132 to create two triangles. The latter 132 bits corre-
spond to a chromosome (i.e., a possible solution to the optimization problem containing 𝑆𝑃𝑠 that belong to the 𝐴 set). Three-hundred generations of a population of 125 chromo-
somes each have been used. The mutation and the crossover probability have been set to 
35% and 85%, respectively, determining which of the chromosomes will survive to the 
next generation. Elitism has been also deployed, letting the best five chromosomes survive 
always to the next generation. Penalties with successively decreasing values are assigned 
in the algorithm in a sequential manner as follows: (i) for points or triangle areas that fall 
outside of the examined region, as well as for triangles that intersect with each other (pen-
alties with the largest values); (ii) for limitations resulting from the exclusion criteria of 
Table 1 related to set 𝐶 (penalties with intermediate values); and, finally, (iii) for limita-
tions resulting from the constraints described by Equations (7)–(10) (penalties with the 
smaller values). In this way, the algorithm efficiently promotes the chromosomes that ful-
fill as many requirements as possible. 

In the present paper, optimum solutions have been found for 100 different combina-
tions of 𝐷𝐺௠௔௫  and 𝐴𝑟𝑒𝑎௠௜௡ values. More specifically, 10 different 𝐷𝐺௠௔௫  values have 
been taken into account, varying from 2.5 km to 7.0 km, with a step of 0.5 km. Regarding 𝐴𝑟𝑒𝑎௠௜௡ , 10 different values of this quantity have been also considered, from 0.5 km2 
(≈0.8% of the overall region) to 5.0 km2 (8% of the overall region), with a step of 0.5 km2. 
To perform all the required computations, the computer cluster, Aristotelis of Aristotle 

Figure 5. One of the two triangles of a chromosome, intersecting with and including a number of SPs
(red blocks). Xi, Yi, i = 1,2,3, are the spatial coordinates of the triangle’s vertices in the deployed X −
Y grid. Red lines correspond to minor roads, the pink line represents the railway, and the background
is the SDIS raster.

In the present paper, optimum solutions have been found for 100 different combina-
tions of DGmax and Areamin values. More specifically, 10 different DGmax values have been
taken into account, varying from 2.5 km to 7.0 km, with a step of 0.5 km. Regarding Areamin,
10 different values of this quantity have been also considered, from 0.5 km2 (≈0.8% of the
overall region) to 5.0 km2 (8% of the overall region), with a step of 0.5 km2. To perform all
the required computations, the computer cluster, Aristotelis of Aristotle University of Thes-
saloniki, has been used, deploying 125 CPUs simultaneously, one for every chromosome of
each generation. The corresponding results are, finally, used as a basis to create a relevant
web-GIS application, which is presented in the next section. This application is realized by
using the R packages, “shiny” [63], “leaflet” [64], “tmap” [65], and “plotly” [66].

4. Results and Discussion

In this section, the results of the present analysis are presented and discussed. Starting
with the thematic maps of the exclusion criteria, Figure 6a shows the incompatibility zones
of EC1–EC4 (Table 1), whereas in Figure 6b, the slope terrain thematic map (EC5, Table 1)
is cited. Areas that fall within the incompatibility zones of Figure 6a cover 26.9 km2 and
belong to set C. Most of these areas correspond to environmentally protected areas, followed
by minor roads and non-agricultural areas.

With regard to the viewshed analysis, Figure 7a shows a cumulative weighted view-
shed map indicatively for a maximum observation distance of 5000 m (10th viewshed class
of Table 2, with r10 = 5000 m and c10 = 1), whereas in Figure 7b, the finally produced SDIS
map, where all viewshed classes of Table 2 are taken into account, is presented. In Figure 7a,
the symbol SDIS10 has been used in the legend to denote results that have been obtained
for all N observers (Equation (1)), but for DISi,pix = c10Vi

10,pix, i = 1, . . . , N in Equation (2).
The results of Figure 7a indicate large SDIS10 values in the high elevation areas, since those
areas correspond to the most visible ones from a large distance. However, it can be seen that
the SDIS map (Figure 7b) offers better results in terms of disturbance, since it accounts for
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the largest effect of the nearest objects on the visibility in an efficient manner. Accordingly,
large SDIS values are bounded in areas located close to the roads and the residencies.
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As for the optimization results, the minimum values of the objective function described
by Equation (6) (i.e., sum of the SDIS values over all optimum areas) obtained for the
100 different DGmax and Areamin combinations are summarized in Table 4. In this table,
values ≥ 2.5 correspond to penalty values and denote DGmax and Areamin combinations
without any possible solutions (i.e., A = {}). The results of Table 4 indicate that for a
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given DGmax value, the increase of the minimum allowable total coverage area for PV
installations (Areamin) generally leads to larger SDIS values. This is attributed to the fact
that by increasing Areamin, larger areas suitable for installing PVs can be allocated, leading
to a larger social disturbance. The opposite holds true for DGmax, since for a given Areamin,
the increase of DGmax reduces the space suitable for PV installations, and, thus, it leads,
in general, to smaller SDIS values. The effect of the DGmax and Areamin siting preferences
on the optimization results is also shown schematically in Figure 8, where the minimum
SDIS values of Table 4 for the 67 non-empty solution sets are plotted. It is also interesting
to note that empty solution sets are mainly obtained for numerous Areamin values, when
DGmax ≤ 3.5 km. For example, for DGmax = 2.5 km, only one optimum solution has been
obtained in the case of the smallest examined Areamin (equal to 0.5 km2). This, in turn,
illustrates that for small DGmax values, extensive areas for PV installations cannot be found
in the region.

Table 4. Minimum values of the objective function for the examined DGmax and Areamin combinations.
Results with values < 2.5 should be multiplied by 109.

Areamin Values (km2)
DGmax Values (km)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.5 0.022 0.025 0.024 0.009 25.000 0.011 0.010 0.009 0.006 0.006
1.0 5.000 0.048 0.044 0.033 0.028 0.020 0.029 0.019 0.018 0.017
1.5 7.500 7.500 0.070 0.051 0.042 0.045 0.037 0.039 0.028 0.025
2.0 10.000 10.000 0.101 0.091 0.067 0.065 60.000 0.052 0.038 0.034
2.5 12.500 12.500 0.128 0.094 0.089 0.097 0.100 0.081 0.064 0.048
3.0 15.000 15.000 15.000 0.140 0.120 0.104 0.122 0.096 0.082 0.077
3.5 17.500 17.500 17.500 0.163 0.147 0.139 0.159 0.125 0.101 0.071
4.0 20.000 20.000 20.000 0.168 0.170 0.165 20.000 0.157 0.118 0.093
4.5 45.000 22.500 22.500 22.500 0.229 22.500 22.500 22.500 0.148 0.109
5.0 50.000 150.000 25.000 25.000 25.000 25.000 25.000 0.204 0.178 0.124
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Figure 9 shows the entities of the A set (i.e., optimum solutions) for DGmax = 7.0 km
and Areamin = 0.5 km2 (smallest examined low bound of PV locations’ total coverage area),
whereas in Figure 10, the A set entities corresponding to the aforementioned DGmax, but
to Areamin = 5.0 km2 (largest examined low bound of PV locations’ total coverage area),
are presented.
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It can be easily concluded that for both siting preferences combinations, the optimum
areas for PV installations correspond to agricultural parcels that have low visibility, while
not intersecting with the incompatibility zones of any of the exclusion criteria considered
herein. Furthermore, distinctive compact regions of closely located agricultural parcels are
formed. In the case of Areamin = 0.5 km2 (Figure 9), optimum locations are bounded in the
north-eastern region of the study area. Some of these locations also correspond to optimum
solutions when Areamin = 5.0 km2 (Figure 10). However, for this Areamin value, a larger
number of optimum areas are obtained, which are also distributed in the form of compact
regions within the whole examined study area. Although only two triangles are deployed
in the GAs algorithm to identify optimum spatial entities (see Section 3.3), the results of
Figure 10 clearly indicate that distinguishable compact regions of optimum locations for
PV installations can be realized. This is attributed to the ability of the algorithm to create
large-size triangles, which, at the end of the iterative optimization process, will include
only spatial entities belonging to set A.

Finally, Figure 11 shows a snapshot of the web-GIS application developed by taking
into account the results of the GAs-driven optimization process for all the examined DGmax
and Areamin combinations. The user can: (a) set, via bars, his/her preferences regarding the
values of DGmax and Areamin; (b) visualize all the results (optimum areas, as well as spatial
entities belonging to B and C sets); and (c) download a matrix that contains all spatial
information (e.g., official IDs) related to the areas of set A.
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5. Conclusions

In this paper, an integrated methodology has been developed to identify optimum ar-
eas for PV installations on municipality scale that minimize the relevant visual disturbance
and satisfy spatial constraints related to land use, environmental, and techno-economic
siting factors. The visual disturbance of the public due to PV installations is quantified by
introducing and calculating the SDIS indicator, whereas optimum locations are determined
for the predefined values of two siting preferences (maximum allowable PV locations—
grid station distance; and minimum allowable total coverage area of PV installations). In
addition to the development of standard thematic maps of exclusion criteria, a cumulative
weighted viewshed analysis is realized to quantify the SDIS indicator, and then optimum
solutions are determined by developing a GAs-driven optimization process. The proposed
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methodology is applied for the municipality of La Palma Del Condado located in the
province of Huelva, Andalucia, Spain, for 100 different combinations of DGmax (maximum
allowable PV locations—grid station distance) and Areamin (minimum allowable total cov-
erage area of PV installations). The main conclusions of the present investigation can be
summarized as follows:

• The map of the proposed SDIS indicator can be easily created by both researchers
and practitioners with low computational cost, and it accounts for the larger effect of
the nearest objects on the visibility in an efficient manner. Accordingly, it can offer
more realistic results than traditional viewsheds for assessing the visual effect of PV
installations to the public.

• For a given DGmax value, the increase of Areamin facilitates the allocation of larger
optimally suitable areas for installing PVs; thus, the aforementioned increase leads
generally to larger SDIS values. The opposite holds true for DGmax, since, from a
physical point of view, the increase of DGmax for a given Areamin value reduces the
space suitable for PV installations. For the examined study area, the GAs-driven
optimization process has led to empty optimum solution sets for numerous Areamin
values, especially when DGmax ≤ 3.5 km, demonstrating that for small DGmax values,
extensive areas for PV installations cannot be found in the region.

• The developed GAs-driven optimization process offers the ability to determine distin-
guishable, but compact, regions of optimum locations for PV installations within the
examined region, facilitating relevant regional planning decisions. The consideration
of the SDIS indicator in the objective function can contribute to the mitigation of
potential social oppositions and negative impacts on land activities, since optimum
areas correspond to those that will have the minimum visual impact to the community.

• The developed web-GIS application presents a flexible and easy-to-use tool that
enables the visualization of PV plants’ optimum locations in the study area for different
bounds of the PV locations—grid station in-between distance and of the PV locations’
total coverage area. Accordingly, it facilitates policy-makers to choose the set of
solutions that better fulfils their preferences/strategies related to the above factors.
The flexibility of the tool can also contribute to the reduction of bureaucracy, as well as
to the further boost of the local solar energy market in an environmentally friendly
and socially accepted manner.

The proposed methodology is general and can be easily applied to other regions in
or outside Spain in order to identify optimum areas for PV installations by appropriately
modifying, if necessary, the set of the exclusion criteria according to the spatial conditions,
legislation limitations, and/or any special features of the examined region. Furthermore,
the calculation of the SDIS indicator by considering additional factors that can affect
visibility (e.g., temporal variations), as well as the deployment of another evolutionary
optimization method to solve the examined optimization problem and the comparison of
results, including computational cost aspects, with the ones of the present study, could
represent items for future research.
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