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Agrivoltaics are a novel form of agricultural production where photovoltaic panels are blended with crops 
in order to optimize land use, particularly with respect to crop production and power generation. Given 
agrivoltaics are complicated systems where crop production, water use efficiency, land use efficiency, solar 
energy production, and the economics of the entire system are all dependent and competing for solar energy, 
there is opportunity to develop models incorporating these objectives into an optimizable framework. This work 
contributes to agrivoltaic design methodology through a digital replica and genomic optimization framework 
which simulates light rays in a procedurally generated agrivoltaic system at an hourly timestep for a defined 
crop, location and growing season to model light absorption by the photovoltaic panels and the crop below. 
Hourly radiation values are then summed into daily radiation values and fed into a crop model to simulate 
performance of an agrivoltaic and a reference crop at a daily timestep. The results of photovoltaic and crop 
performance metrics for a given design are then used in a genomic optimization algorithm to conduct a multi-
objective optimization across various designs to find an optimal, crop-driven solution for a defined crop, season 
and location. A numerical example is demonstrated using this framework with a SunnySD tomato crop grown 
in Davis, California, resulting in 28.9% optimization of combined crop and energy production using a genomic 
optimization scheme over 50 generations.
1. Introduction

Agrivoltaic technology is a rapidly evolving field which has seen 
increasing activities since 2011 with a series of well cited studies oc-
curring in Montpellier, France [1–4]. The scale and scope of agrivoltaic 
experiments range from simulations and mathematical models, to field 
experiments [5,6]. Additionally, agrivoltaics include a wide range of 
systems which fall largely into the category of greenhouses [7,8] and 
photovoltaic arrays in fields [9,10] which will be the subject of this 
model. Photovoltaic arrays in agricultural fields, considered field style 
agrivoltaics, are a form of agrivoltaics where photovoltaic arrays are 
placed over agricultural crops (Fig. 1) to manage energy balance into 
the system. There are many reasons to use agrivoltaic systems, including 
improved land use efficiency, economic value of electricity, optimized 
crop microclimate and reduced water use, but ultimately all of them 
require a framework for evaluation of their performance in order to de-
sign and optimize a given design.

* Corresponding author.

A number of modeling frameworks have been presented which ap-
proach agrivoltaic modeling combining the light simulation of photo-
voltaics and the dynamics of how photovoltaics will impact the agri-
cultural component of the related crop response [9,11,12]. Efforts have 
also been made to optimize agrivoltaic designs [13,14], but given the 
complexity and various potential optimization parameters (photosyn-
thetic performance, energy production, land use efficiency, economic 
performance, etc.) there is still opportunity to develop optimization 
schemes which focus on different aspects of agrivoltaic performance. 
This work proposes contributing to agrivoltaic design methodology by 
utilizing a digital replica framework centered around crop production 
which first simulates light into an agrivoltaic system to model photo-
voltaic and crop performance and using the outputs of these models in 
conjunction with a multi-objective genomic optimization algorithm to 
rapidly evaluate agrivoltaic design performance across various metrics 
(energy and crop production, light and water use efficiency) and find a 
crop centered solution for a given crop and place.
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Fig. 1. Field style agrivoltaic system designed in Unity3D.

Fig. 2. Left: Modeled APV system. Right: Beam decomposition for the raytracing model.
2. Digital replica model

A digital replica model is a simulation framework where a replica 
of a physical system can be used for analysis, optimization, and ma-
nipulation without the real-world cost of building the physical system. 
A digital-replica of an agrivoltaic system can be created to run physics 
simulations to assess agrivoltaic performance. This method has been 
previously explored by the authors and the reader is referred to Zo-
hdi [15] and Isied et al. [16] for details on creating such a framework. 
The said framework was built to assess the agrivoltaic performance in 
terms of ground and solar panel absorption of light using a geometric 
raytracing method. This study aims to combine the raytracing frame-
work with a crop model to evaluate agrivoltaic performance based on 
a crop-centered approach. A digital replica of an open-field agrivoltaic 
system is generated using the light model and the crop model to op-
timize the system design over a specified crop-season with associated 
ambient parameters.

2.1. Light model

2.1.1. Model assumptions

The light model simulates a light-pulse applied to the agrivoltaic 
system at hourly time intervals for hours where the sun is above horizon 
for every day in a specified crop season. Solar angles are simulated 
using an open-source python package, called pysolar [17], while solar 
radiation values are read from a weather file. Increasing the number of 
simulated days rapidly increase run time for the simulation, therefore, 
certain assumptions are made to reduce computational load:

• The solar panels are identical in shape, installation angle, and ma-
terial,

• The light model flashes a unit area of the agrivoltaic field, assuming 
2

the distribution of solar panels on the field is uniform,
• The solar panels are bifacial, therefore able to absorb energy re-
flected from ground and other solar panels.

The detailed assumptions regarding the raytracing framework can be 
found in Zohdi [15].

2.1.2. Solar panel geometry

The solar panel geometry is assumed to be known and described by 
a surface function, 𝐹 (𝑥1, 𝑥2, 𝑥3). The solar panels shapes are generated 
using the 3D-ellipsoidal equation:

𝐹 (𝑥1, 𝑥2, 𝑥3) =
||||𝑥1 − 𝑥1𝑜

𝑅1

||||
𝑝1
+
||||𝑥2 − 𝑥2𝑜

𝑅2

||||
𝑝2
+
||||𝑥3 − 𝑥3𝑜

𝑅3

||||
𝑝3

(1)

where (𝑅1, 𝑅2, 𝑅3) are the generalized radii, (𝑝1, 𝑝2, 𝑝3) are the exponents 
of the generalized ellipsoid, and (𝑥1𝑜, 𝑥2𝑜, 𝑥3𝑜) are the center location of 
the ellipsoid. These are the design parameters we will optimize using 
the genomic optimization framework. Fig. 3 shows various shapes the 
solar panels can attain.

Rays traveling through the system collide with the solar panels if 
𝐹 (𝑥1,𝑗 , 𝑥2,𝑗 , 𝑥3,𝑗 ) ≤ 1, where 𝑗 indicates each ray. As the agrivoltaic 
system includes more than one panel on the field, the algorithm will 
check if a ray has collided with any of the solar panels located at 
(𝑥1𝑜,𝑖, 𝑥2𝑜,𝑖, 𝑥3𝑜,𝑖). Similarly, the ray is assumed to hit the ground surface 
if 𝑥3,𝑗 ≤ 0. The power absorption by the surface and power reflected 
by the ray can be determined using reflectivity calculations, which are 
described in the next section.

2.1.3. Raytracing algorithm

It is assumed the light incident on the agrivoltaic system can be 
discretized as a collection of rays, which are propagated through the 
system using a time-stepping scheme. The initial collective power of 
the rays, 𝑃𝑡𝑜𝑡, is read from a weather file for the given date, time, and 

location as the clear sky radiation given in 𝑊

𝑚2 . A square beam is initial-
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Fig. 3. Example solar panel shapes generated using the 3D-ellipsoidal equation for (a) (𝜃1 , 𝜃2, 𝜃3) = (0, 𝜋∕2, 𝜋∕2), (𝑅1, 𝑅2, 𝑅3) = (0.002, 0.2, 0.2), (𝑝1, 𝑝2, 𝑝3) = (5, 1∕2, 1∕2)
and (b) (𝜃 , 𝜃 , 𝜃 ) = (0, −𝜋∕4, 0), (𝑅 , 𝑅 , 𝑅 ) = (0.002, 0.15, 0.15), (𝑝 , 𝑝 , 𝑝 ) = (20, 20, 20). The shadow cast by the panels at noon can be seen on the ground surface.
1 2 3 1 2 3 1 2 3

ized at the appropriate position and velocity in order to hit the entirety 
of the field at any given sun angle. Initial power of an individual ray is 
defined as:

𝑃𝑟 =
𝑃𝑡𝑜𝑡𝐴𝑏

𝑁𝑟

(2)

where 𝐴𝑏 is the area of the square beam and 𝑁𝑟 is the number of rays 
used in the discretization of the sunlight beam. When a ray hits a surface 
(Fig. 2), the inward surface normal is calculated at the point the ray has 
intersected the surface:

𝒏 = − ∇𝐹||∇𝐹 || (3)

where ∇𝐹 is the gradient of the solar panel. For the ground surface, 
the surface is assumed to be flat and has the normal 𝒏 = [0, 0, −1]. Using 
the surface normal and the incoming ray velocity vector, the angle of 
incidence (𝜃𝑖) can be calculated as

𝜃𝑖 = cos−1
(

𝒗𝑗 ⋅ 𝒏𝑗‖𝒗𝑗‖‖𝒏𝑗‖
)

(4)

The ray velocity perpendicular to the surface normal can be calcu-
lated as

𝒗𝑗,⟂ = ‖𝒗𝑗‖ cos𝜃𝑖𝒏𝑗 (5)

The reflected ray velocity is then calculated (𝒗𝑟𝑒𝑓

𝑗
) by subtracting the 

perpendicular velocity component twice from the initial ray velocity:

𝒗
ref
𝑗

= 𝒗𝑗 − 2𝒗𝑗,⟂ (6)

Finally, power absorbed by the surface is calculated and retained by 
the ray using the reflectance parameter, . The ratio of the amount 
of reflected electromagnetic energy per unit time (𝐼𝑟) to the incident 
electromagnetic energy per unit time (𝐼𝑖) is assumed to be given by total 
reflectance  ≡ 𝐼𝑟

𝐼𝑖
where 0 ≤  ≤ 1 for unpolarized electromagnetic 

radiation. The reflectance is dependent on the angle of incidence and 
the refractive index ratio (�̂�) of the solar panels to the ambient medium, 
which is assumed to be a vacuum for the purposes of raytracing. The 
refractive index ratio is calculated as

�̂� =
𝑛𝑎

𝑛𝑖

(7)

The absorbing medium refractive index, 𝑛𝑎, is part of the design 
space and is determined by the genomic optimization framework. The 
incident refractive index is assumed to be 𝑛𝑖 = 1 (vacuum). The reflec-
3

tivity  can be calculated as
(�̂�, 𝜃𝑖) =
𝐼𝑟

𝐼𝑖

(8)

= 1
2
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2
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(9)

The details of the derivation of  is given in Zohdi [15]. The surface 
power absorption and ray power retention are calculated at each ray-
surface interaction throughout the simulation. The power absorbed by 
the surface can be calculated by

𝑃𝑎𝑏𝑠 = (1 − )𝑃𝑟 (10)

The remaining power in the ray is calculated as follows:

𝑃𝑟𝑒𝑓 = 𝑃𝑟 (11)

The ray is tracked in the system as long as:

• the ray is within the system domain limits,
• its power is above the specified power threshold 𝑃𝑚𝑖𝑛.

The rays are propagated in the system using explicit Forward Euler 
time-stepping scheme. The raytracing algorithm can be described by the 
following steps:

1. Initialize ray positions 𝒓𝑗 (𝑡 = 0) and velocities 𝒗𝑗 (𝑡 = 0).
2. Check for surface-ray collisions. IF a ray intersects a surface:

(a) Update power absorbed by the surface and remaining power of 
the ray,

(b) Calculate the reflected ray velocity.
3. Check for active rays:

(a) End simulation IF all rays are deactivated,
(b) Continue to next step IF any of the rays are active.

4. Iterate ray positions in time using:

𝒓𝑗 (𝑡+Δ𝑡) = 𝒓𝑗 (𝑡) + Δ𝑡𝒗𝑗 (𝑡) (12)

5. Increment the time step to (𝑡 = 𝑡 +Δ𝑡) and go back to Step 2.

The time-step size Δ𝑡 is chosen using the formula Δ𝑡 = 𝜉
ℎ

𝑟𝑎𝑦

0
𝑐

, where 
ℎ

𝑟𝑎𝑦

0 is the initial height of the generated rays, 𝑐 is the speed of light, 
and 𝜉 is a tunable parameter such that 𝜉 ∈ (0, 1]. The speed of the light 
requires a time step size scaled to accurately observe the motion of the 
rays with a sufficient number of time steps. For this work, the parameter 

is chosen to be 𝜉 = 0.01
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2.2. Crop model

Crop modeling aims to take in measured inputs and an understand-
ing of plant physiological processes to determine when and how a crop 
will grow. This framework utilizes the SIMPLE Crop Model [18].

2.2.1. SIMPLE crop model

The SIMPLE Crop Model is a model designed to simplify crop model-
ing to basic components. It is well validated and uses simple parameters 
allowing for straightforward and fast implementation. The model works 
on a daily time step by first looking at the crop’s temperature, and de-
termining where in the growth process it should be through cumulative 
thermal time. Once crop temperature is determined to be within the 
proper range, the growth stage and light input plus other crop parame-
ters are used to simulate daily biomass growth, which is them summed 
through the season. At the end of the season, the cumulative biomass is 
multiplied by a harvest index to represent yield. The exact details are 
delineated in the original publication [18], but are summarized below:

𝐵𝑟𝑎𝑡𝑒 = 𝑃 ×𝑓 (𝑆𝑜𝑙𝑎𝑟)×𝑅𝑈𝐸×𝑓 (𝐶𝑂2)×𝑓 (𝑇 𝑒𝑚𝑝)×𝑚𝑖𝑛(𝑓 (𝐻𝑒𝑎𝑡), 𝑓 (𝑊 𝑎𝑡𝑒𝑟))

(13)

𝐵𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑖+1 = 𝐵𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑖 +𝐵𝑟𝑎𝑡𝑒 (14)

𝑌 𝑖𝑒𝑙𝑑 = 𝐵𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 ×𝐻𝐼 (15)

Where 𝐵𝑟𝑎𝑡𝑒 and 𝐵𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 is the daily biomass gain and cumulative 
biomass respectively, 𝐻𝐼 is the crop specific harvest index, and 𝑃 is the 
daily radiation into the system.

Agrivoltaic theory is built on the analysis of 𝐶𝑂2 limited photosyn-
thesis at high light levels resulting in a light saturation point [19–22]
which facilitates dual use of the energy in excess to crop demands. 
While it would be preferable to use a more representative photosynthe-
sis model to simulate plant growth, this paper presents an agrivoltaic 
modeling framework and any crop model will serve as a substitute. It 
is not strictly necessary to undergo the complex studies required for a 
more accurate photosynthesis model to modify the SIMPLE model given 
the scope of this framework.

The SIMPLE Crop Model also has a robust air temperature response 
model, but no extensions are included in this framework to model the 
specific temperature impacts of agrivoltaics for either the air or crop 
temperatures. While the agrivoltaic literature suggests there is some 
impact relating to air temperature at the plant level in the agrivoltaic 
installation [6], previous modeling has shown the overall impact of 
air temperature differences to not have meaningful impact on plant 
growth [3] (it is suggested light is the primary driver in any growth 
differences), particularly if the photovoltaics are sufficiently far from 
the plants [23] (over 1.5 m). This suggests modeling air temperature 
dynamics would have marginal impact to this framework while dra-
matically increasing computational demands and simulation time, and 
for this reason is not conducted in this framework.

In addition to the outputs of the model, two additional metrics are 
added: Light Use Efficiency (𝐿𝑈𝐸) and Water Use Efficiency (𝑊 𝑈𝐸).

𝐿𝑈𝐸 = 𝑌 𝑖𝑒𝑙𝑑

𝑇 𝐿𝐼
(16)

𝑊 𝑈𝐸 = 𝑌 𝑖𝑒𝑙𝑑

𝑇 𝑊 𝐷
(17)

Where 𝑌 𝑖𝑒𝑙𝑑 is the total crop yield for the simulated season (which 
in this case is the system for either the agrivoltaic or the reference crop, 
depending on which step of the simulation is being done), 𝑇 𝐿𝐼 is the 
sum total light into the system for the simulated season, and 𝑇 𝑊 𝐷 is 
the sum total reference evapotranspiration for the simulated season as 
described below:

𝐻𝑎𝑟𝑣𝑒𝑠𝑡

𝑃𝑐𝑟𝑜𝑝,𝑑𝑎𝑖𝑙𝑦𝑑𝑡 (18)
4

∫
𝑃 𝑙𝑎𝑛𝑡𝑖𝑛𝑔
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𝐻𝑎𝑟𝑣𝑒𝑠𝑡

∫
𝑃 𝑙𝑎𝑛𝑡𝑖𝑛𝑔

𝐸𝑇𝑜𝑑𝑡 (19)

The purpose of these additional metrics is to facilitate agriculturally 
focused optimization which allows for improved agricultural perfor-
mance without strictly requiring increased yields. To support the 𝑊 𝑈𝐸

calculation, water use was also simulated by utilizing the Penman-
Monteith equation to calculate daily reference evapotranspiration (𝐸𝑇𝑜) 
as described in [24]. 𝐸𝑇𝑜 is chosen over 𝐸𝑇𝑐 because the SIMPLE Crop 
Model does not contain a simple method for integrating crop coeffi-
cients (𝐾𝑐 values), and 𝐾𝑐 values for agrivoltaic production are not well 
developed making direct calculation of 𝐸𝑇𝑐 values difficult and beyond 
the scope of the framework.

2.3. Linking the light and crop model

The framework proposed in this study combines the light simula-
tion model with the crop model in order to optimize the agrivoltaic 
system using crop performance and solar energy production metrics, 
as seen in the framework diagram in Fig. 4. First, the light model is 
run to obtain the solar panel power absorption and ground surface 
power absorption. Daily radiation values obtained through the light-
based simulation are then passed into the crop model which calculates 
the reference and agrivoltaic crop yield via the SIMPLE model. The crop 
model then outputs agrivoltaic and reference crop yields as well as other 
crop performance metrics discussed earlier. The entire framework has 
been built in Python 3.9 with only numpy and pysolar external pack-
ages. The main program with system parameters, the light model, and 
the genetic algorithm calls the crop model in a secondary program. The 
light model simulates the sun’s position for the crop season and calcu-
lates average ground radiation ( 𝑊

𝑚2 ), which is then passed onto the crop 
model to calculate the crop biomass, evapotranspiration, water, and 
light use for a given agrivoltaic design. This routine is repeated for each 
agrivoltaic design in the genetic optimizer in each generation to calcu-
late the design fitness, rank designs, and use evolutionary principles to 
retain the best performers. Currently, the code uses manually inputted 
system parameters (i.e. weather data, crop type, solar panel properties, 
etc.) to optimize the design, although it is possible to develop a GUI for 
crop growers to use this framework for their own choice of crops, solar 
panels, and location in future extensions.

3. Genomic optimization framework

3.1. Design parameters

The agrivoltaic system design is defined by the following variables:

𝚲𝑖 ≡ {Λ𝑖
1, ...,Λ

𝑖
𝑁
} ≡ {𝜃2, 𝜃3, �̂�𝑠, �̂�𝑔 , ℎ0,𝑅2,𝑅3, 𝑝1, 𝑝2, 𝑝3} (20)

where �̂�𝑠 and �̂�𝑔 are the refractive indices of the solar panels and the 
ground, 𝑅2 and 𝑅3 are generalized radii of the solar panels, 𝜃2 and 
𝜃3 are the solar panel rotation around 𝒆2 and 𝒆3 axes, 𝑝1, 𝑝2, and 𝑝3
are the geometric exponents. The thickness of the solar panel, 𝑅1, and 
the rotation around 𝒆1 are kept constant. The rotation of solar panels 
around all three axes is not practical since the panels only need to adjust 
for the sun altitude and azimuth angles. While only stationary panels 
are considered for this study, solar tracking panels can be implemented 
by having one altitude and azimuth angle pair per day as part of the 
design variables. The design parameters in 𝚲𝑖 can be chosen within 
user-specified bounds.

3.2. Design fitness

The “fitness” or cost associated with a given agrivoltaic system de-
sign is determined by a custom cost function. A good agrivoltaic design 
will appropriately distribute incoming sunlight between the solar pan-

els and the ground. However, the ground energy absorption does not 
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Fig. 4. Digital replica and genomic optimization framework.
fully represent the crop performance. Therefore, the crop yield from the 
agrivoltaic system needs to be comparable to the reference crop yield, 
which is independently calculated using the same ambient parameters 
but without the solar panels on the field. The following cost function is 
proposed to evaluate the agrivoltaic system performance:

Π= 𝑤1𝛼 +𝑤2𝛽 +𝑤3𝜂𝐿 +𝑤4𝜂𝑊 (21)

where are defined by the following equations:

𝛼 =
𝑃𝑟𝑒𝑓 − 𝑃𝑠𝑜𝑙𝑎𝑟

𝑃𝑟𝑒𝑓

(22)

𝛽 =
𝑌𝑟𝑒𝑓 − 𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓

(23)

𝜂𝐿 =
𝐿𝑈𝐸𝑟𝑒𝑓 −𝐿𝑈𝐸𝐴𝑃𝑉

𝐿𝑈𝐸𝑟𝑒𝑓

(24)

𝜂𝑊 =
𝑊 𝑈𝐸𝑟𝑒𝑓 −𝑊 𝑈𝐸𝐴𝑃𝑉

𝑊 𝑈𝐸𝑟𝑒𝑓

(25)

where the weights can be chosen by the user to prioritize the agricul-
ture, solar power generation, etc. The lack of an absolute value function 
on the agricultural cost parameters enables the optimizer to generate 
designs that can exceed the reference crop performance in terms of the 
individual cost parameters, as demonstrated in a 2017 German agri-
voltaic potato crop [25] where agrivoltaic yields exceeded the reference 
yield. While this is a single example, and the SIMPLE crop model cannot 
strictly replicate this performance, there is the theoretical possibility of 
a more complicated crop model outputting improved agrivoltaic yields 
compared to the reference crop. As such, this framework allows for the 
possibility of improved yields, even if only theoretical, to incentivize 
high crop yields in the designs. Note that all the cost parameters are 
non-dimensional and normalized.

3.3. Constraints

There are many critical constraints when considering agrivoltaic 
design, however, two important ones identified in the literature are con-
5

sidered in this framework:
1. Agrivoltaics should focus on supporting agricultural production 
and should have a constraint which minimizes the negative im-
pacts of shading on crop yield [26–28],

2. Agrivoltaic land use should not excessively compromise agricul-
tural or photovoltaic production and should have a constraint en-
suring the combined land equivalent ratio of agricultural and pho-
tovoltaic production is greater than single use of the land for either 
type of production to ensure any production compromises ulti-
mately yield a net gain to the efficiency of the land use [1,9,29,30].

These two constraints are selected as they well represent the desire 
for agrivoltaics to provide value centered around agriculture, and can 
be mathematically described with the following equations:

𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓

≥ 𝛿 (26)

𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓

+
𝑃𝑠𝑜𝑙𝑎𝑟

𝑃𝑟𝑒𝑓

≥ 1 (27)

where 𝑌𝑟𝑒𝑓 refers to the reference crop yield (no solar panels on field), 
𝑃𝑟𝑒𝑓 refers to the reference solar energy generation (no crops) and 𝛿
refers to the percent of acceptable loss of crop yield related to installing 
agrivoltaics. Because these constraints need to be enforced on the cost 
parameters rather than the design parameters, the design space cannot 
be limited to acceptable designs a priori. One option is to enforce soft 
constraints to the system by including penalty terms in the cost func-
tion with very large weights to eliminate designs that do not abide the 
constraints during the design evaluation process of the genomic opti-
mization framework. The modified cost function can be written as:

Π= 𝑤1𝛼 +𝑤2𝛽 +𝑤3𝜂𝐿 +𝑤4𝜂𝑊 + 𝑃1 + 𝑃2 (28)

where,

𝑃1 =
⎧⎪⎨ 10000 for 𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓
< 𝛿

𝑌𝐴𝑃𝑉
(29)
⎪⎩ 0 for

𝑌𝑟𝑒𝑓
≥ 𝛿
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Fig. 5. Children generation from best performing genes (parents).

𝑃2 =
⎧⎪⎨⎪⎩
10000 for 𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓
+ 𝑃𝑠𝑜𝑙𝑎𝑟

𝑃𝑟𝑒𝑓
< 1

0 for 𝑌𝐴𝑃𝑉

𝑌𝑟𝑒𝑓
+ 𝑃𝑠𝑜𝑙𝑎𝑟

𝑃𝑟𝑒𝑓
≥ 1

(30)

3.4. Genetic algorithm

To apply the genetic algorithm,

1. Generate 𝑆 random genetic strings, where 𝚲𝑖 ∈ [Λ−
𝑖
, Λ+

𝑖
]

𝚲 = (𝚲(1),𝚲(2), ...,𝚲(𝑖), ...,𝚲(𝑆)) (31)

where

𝚲(𝑖) =

⎛⎜⎜⎜⎜⎝

𝜃−2 ≤ 𝜃
(𝑖)
2 ≤ 𝜃+2
...

...

𝑝−3 ≤ 𝑝
(𝑖)
3 ≤ 𝑝+3

⎞⎟⎟⎟⎟⎠
(32)

2. Compute fitness of each string by evaluating Π(𝚲(𝑖)) ∀ 𝑖

3. Rank the genetic strings where the top rank has the minimum cost 
function Π(𝚲(𝑖))

4. Mate the top pairs of genetic strings to obtain 2 children (see 
Fig. 5), such that:

𝚲(𝑐𝑖) =

⎛⎜⎜⎜⎜⎝

𝜃
𝑝𝑖

2 𝜙1 + 𝜃
𝑝(𝑖+1)
2 (1 − 𝜙1)
...

...

𝑝
𝑝𝑖

3 𝜙10 + 𝑝
𝑝(𝑖+1)
3 (1 −𝜙10)

⎞⎟⎟⎟⎟⎠
where 𝜙𝑗 ∈ rand[0,1].

𝚲(𝑐(𝑖+1)) =

⎛⎜⎜⎜⎜⎝

𝜃
𝑝(𝑖+1)
2 �̂�1 + 𝜃

𝑝𝑖

2 (1 − �̂�1)
...

...

𝑝
𝑝(𝑖+1)
3 �̂�10 + 𝑝

𝑝𝑖

3 (1 − �̂�10)

⎞⎟⎟⎟⎟⎠
where �̂�𝑗 ∈ rand[0,1].

5. Remove bottom 𝑆 − 𝑃 original strings from population. Generate 
𝑆 − 𝑃 − 𝑃 new random genetic strings.

6. Repeat steps 2-5 with a new population until either one of these 
conditions is met:
• G generations has been reached.
• 𝑚𝑖𝑛(Π) ≤ 𝑇 𝑂𝐿.

4. Numerical example

A numerical example is generated using the light model parame-
ters in Table 1, and the optimization parameters in Table 3. An entire 
6

season was simulated with the crop model using weather data from a 
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Table 1

Light Model Parameters.

Symbol Type Units Value Description

𝑁𝑟 scalar none 196 Number of light rays
c scalar 𝑚∕𝑠 3 × 108 Speed of light
𝑅1 scalar m 0.02 Solar panel thickness
𝑛𝑝𝑎𝑛𝑒𝑙 scalar none 4 Number of solar panels

Fig. 6. Evolution of total cost Π and individual cost parameters. Top: Average 
cost evolution of parent and overall population. Bottom: Individual cost param-
eter and best design cost (excluding penalty terms) evolution.

California Irrigation Management Information System weather station 
[31] located in Davis, California (38.53 N, 121.77 W) from April 10, 
2021 to July 19, 2021. The crop model was ran using settings in Table 2
to simulate SunnySD tomatoes for every day and hour in the aforemen-
tioned season where the altitude of the sun was above the horizon. The 
ground refractive index was made a variable to simulate various plant-
ing densities. The simulated agrivoltaic field has been rescaled to be of 
unit size to allow for smaller number of rays to be used for the light 
model. Lastly, the reference solar power for the agrivoltaic constraint 
was calculated by running the genomic optimizer to maximize solely 
the solar power generation.

These parameters were selected based on the values given in [18]
with the only modification being to the 𝐼50𝐵 term to generate a senes-
cence more in line with expected crop behavior.

This study is presenting a framework for crop-driven agrivoltaic op-
timization rather than searching for the “true” optimal solution. Thus, 
the agrivoltaic design is optimized for 20 designs strings in the popula-
tion and 50 generations of genomic optimization. The agrivoltaic design 
includes the altitude and azimuth angles, solar panel and ground refrac-
tive index, solar panel height, size, and shape.

The evolution of the design total cost per generation can be seen 
in Fig. 6 over 50 generations of optimization. The design and cost pa-
rameters associated with the optimal agrivoltaic design is tabulated in 
Table 4.

The “optimal” design parameters obtained through the genomic op-
timization scheme are used to visualize the agrivoltaic design, seen in 

Fig. 7.
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Table 2

Crop Model Parameters.

Symbol Units Value Description

Crop none Tomato Crop species
Cultivar none SunnySD Specific crop variety
𝑇𝑠𝑢𝑚

◦𝐶 day 2800 Cumulative temperature requirement from sowing to maturity
𝐻𝐼 none 0.68 Harvest index (𝑖.𝑒. percent of harvestable biomass)
𝐼50𝐴

◦𝐶 day 520 Cumulative temperature requirement for leaf area development to intercept 50% of radiation
𝐼50𝐵

◦𝐶 day 900 Cumulative temperature till maturity to reach 50% radiation interception due to leaf senescence
𝐼50𝑚𝑎𝑥𝐻

◦𝐶 day 100 Maximum daily reduction in 𝐼50𝐵 due to heat stress
𝐼50𝑚𝑎𝑥𝑊

◦𝐶 day 5 Maximum daily reduction in 𝐼50𝐵 due to drought stress
𝑇𝑏𝑎𝑠𝑒

◦𝐶 6 Base temperature for phenology development and growth
𝑇𝑜𝑝𝑡𝑖𝑚𝑎𝑙

◦𝐶 26 Optimal temperature for biomass growth
𝑇𝑚𝑎𝑥

◦𝐶 32 Threshold temperature to start accelerating senescence from heat stress
𝑇𝑒𝑥𝑡𝑟𝑒𝑚𝑒

◦𝐶 45 The extreme temperature threshold when RUE becomes 0 due to heat stress
𝑅𝑈𝐸

𝑔

𝑀𝐽∗𝑚2 1 Radiation use efficiency (above ground only and without respiration)
𝑆𝐶𝑂2

none 0.07 Relative increase in RUE per ppm elevated CO2 above 350 ppm
𝑆𝑤𝑎𝑡𝑒𝑟 none 2.5 Sensitivity of RUE (or harvest index) to drought stress (ARID index)
𝛿 none 0.66 Ratio of agrivoltaic yield to reference yield (see eq. (26))

Table 3

Genomic Optimization Parameters.

Symbol Units Value Description

parents none 6 Surviving strings for breeding
S none 20 Designs per generation
G none 50 Total generations
[𝜃−

2 , 𝜃+
2 ]

◦ [−𝜋∕2, 𝜋∕2] Solar panel altitude angle
[𝜃−

3 , 𝜃+
3 ]

◦ [−𝜋,𝜋] Solar panel azimuth angle
[�̂�− , �̂�+] none [1,100] Solar panel refractive index
[ℎ−

0 , ℎ+
0 ] none [0.05,0.15] Solar panel height

[𝑅−
2 𝑜𝑟 3 ,𝑅

+
2 𝑜𝑟 3] none [0.0125,0.125] Generalized radii

[𝑝−1 𝑜𝑟 2 𝑜𝑟 3 , 𝑝
+
1 𝑜𝑟 2 𝑜𝑟 3] none [1,20] Geometric exponent

𝑤1 none 1 Weight of solar panel power in net cost
𝑤2 none 1 Weight of crop yield in net cost
𝑤3 none 1 Weight of light use efficiency in net cost
𝑤4 none 1 Weight of water use efficiency in net cost
𝑃𝑟𝑒𝑓 W 83.51 Reference solar power
𝑌𝑟𝑒𝑓

𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒
1.7 Reference crop yield

𝐿𝑈𝐸𝑟𝑒𝑓
𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒
∕ 𝑀𝐽

𝑠𝑒𝑎𝑠𝑜𝑛
0.0006 Reference light use efficiency

𝑊 𝑈𝐸𝑟𝑒𝑓
𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒
∕ 𝑚𝑚

𝑠𝑒𝑎𝑠𝑜𝑛
0.002 Reference water use efficiency
An example of a single light pulse traveling through the medium 
and interacting with the surfaces is visualized using snapshots of the 
simulation, shown in Fig. 8. It is important to keep in mind that these 
light pulse simulations are done hourly for the number of days the crop 
is simulated. We can see that the “optimal” design places the relatively 
reflective (𝑛 ≈ 60) solar panels with an altitude of 81◦ and azimuth angle 
of 290◦ (converting 𝜃3 to the azimuth angle using 𝜙𝑎𝑧𝑖𝑚𝑢𝑡ℎ = 𝜃3 ×

180
𝜋

−
90◦), which results in sunlight reflecting off the panels and hitting the 
crops at lower solar angles.

For any simulated crop design, a variety of different outputs are 
available for analysis within this framework. Outputs relating to crop 
growth, water use and light are shown in Fig. 9. From analysis of these 
graphs and related data, the crop performance of an agrivoltaic crop 
can be compared to a reference crop. These results are discussed in the 
next section.

5. Discussion of results

The optimized agrivoltaic design can be analyzed through the indi-
vidual cost parameters that form the total cost. It can be seen that the 
best design has avoided violating the critical agrivoltaic constraints re-
garding the crop yield and solar power generation limits and incurring 
the large penalty terms described in Section 3. The genetic algorithm is 
conducting a global search within the design space and was able to ob-
tain the presented lowest cost. Once there are designs that satisfy the 
soft constraints (i.e. negating the penalty costs), the genetic algorithm 
continues to reduce the cost by minimizing the individual cost parame-
7

ters (𝛼, 𝛽, 𝜂𝐿, 𝜂𝑊 ) as much as possible. Only a limited number of designs 
satisfies these agricultural constraints and reduce the cost further. The 
restrictions imposed by these constraints limit the design space which 
is the reason the cost can not be reduced beyond a certain number of 
generations.

The robustness of the genetic algorithm was tested by using differ-
ent seeds in the random number generator for initializing the design 
population and got similar optimization results. The top plot in Fig. 6
displays the parent cost for individual cost parameters which is ex-
pected to show a monotonically decreasing behavior while the average 
design cost is seen to be zig-zagy, which is due to random designs added 
to the population in each generation.

It is seen the best agrivoltaic design after 50 generations employs 
highly reflective near-vertical panels that reflect sunlight for crop pro-
duction while still generating solar power. This is in line with the 
genomic optimization setup where a minimum requirement on crop 
production was enforced by the use of a penalty term for the crop yield 
cost parameter.

These results of nearly vertical panels are interesting as they are 
counter-intuitive to the theory of agrivoltaic production discussed ear-
lier where light during the most radiation dense part of the day should 
be reduced to below the light saturation point. However, vertical pan-
els match the findings of a similar design methodology [14] in Swe-
den which is driven more by photovoltaic performance relative to this 
work’s crop focused methodology. This finding is likely related to two 
particular limitations of this crop model: 1) a constant value is used 
for converting light into biomass (𝑅𝑈𝐸) meaning a linear response be-
tween light and growth, and 2) the daily timestep used in the crop 

model does not characterize the time-sensitive responses to shading and 
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Fig. 7. Detailed views of optimized APV design where yellow indicates the solar panels and green represents the agricultural area.
Table 4

Optimal Agrivoltaic Design Parameters for the Numerical Example.

Π 𝛼 𝛽 𝜂𝐿 𝜂𝑊 𝜃2 𝜃3 �̂�𝑠

0.818 0.561 0.196 0.0 0.061 −0.154 0.344 60.64

�̂�𝑔 ℎ0 𝑅2 𝑅3 𝑝1 𝑝2 𝑝3

1.20 0.094 0.103 0.093 18.24 8.80 13.64

photosynthesis and it appears designs which maximize light when light 
is most dense (i.e. the afternoon) are preferred as the timing of the en-
ergy makes no difference in this implementation. This highlights the 
need for specific agrivoltaic crop models to be developed. Resolving 
these challenges are beyond the scope of this study, but the power of 
the framework presented allows for this modification to be made once 
more research is conducted into agrivoltaic crop modeling.

The cost reduction after 50 generations was determined to be 28.9% 
for the best design (excluding penalty terms) and 59.0% for the average 
design, meaning the design space was restricted to the design subspace 
that satisfied the agrivoltaic constraints. The crop performance as mod-
eled was found to be 1.70 𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒
for the reference versus 1.43 𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒
for 

the agrivoltaic, representing an 18% loss of yield, which is less than the 
8

34% loss acceptable in the design framework. The reference crop 𝐸𝑇𝑂
was calculated to be 853 𝑚𝑚 of water for the season compared to 751 
𝑚𝑚 of water for the agrivoltaic, representing about a 12% decrease in 
reference evapotranspiration.

6. Summary and extensions

Agrivoltaic systems are rapidly developing as a solution to the land 
competition between agriculture and solar power generation. There 
have been a number of modeling approaches that integrates the dy-
namics of the agrivoltaic system to predict crop performance and power 
generation. Optimization through such high fidelity models requires im-
mense computational power. Instead, an alternative framework with 
a reduced order digital replica is used in tandem with a genomic op-
timization scheme to find optimal agrivoltaic designs. The proposed 
framework would help justify investment in photovoltaic arrays over 
agricultural settings in a way which benefits crop production using 
genomic multi-objective optimization to simulate the impact of photo-
voltaic panels on the crop environment, the subsequent crop response, 
and solar power generation.

Overall, this framework demonstrates potential to link light model-
ing with crop modeling to simulate agrivoltaic performance. Although 
the proposed digital replica has limitations on crop model and ray-
tracing accuracy, it provides a foundational framework that utilizes a 

physics-driven optimization approach for agrivoltaics.
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Fig. 8. Raytracing of a single light pulse. The incoming light is discretized into rays which reflect off the solar panels (shown in yellow) and hit the ground (shown 
in green). Solar energy is absorbed by the solar panels, at locations marked as red dots and by the ground, at locations marked as blue dots.
This model can be extended to include thermal modeling of the sys-
tem, wavelength-specific raytracing, and a more advanced crop model 
to further increase the accuracy of the digital replica. Ultimately, a 
validated and refined digital replica can be used to design and test 
agrivoltaic configurations for a given crop, location, and desired power 
generation before the real-life version is built. Current work of the au-
thors include expanding the model to include thermal modeling of the 
9

system, a more advanced crop model which captures the specific nu-
ance of agrivoltaic crop dynamics, and a water use model which looks 
at 𝐸𝑇𝑐 rather than just 𝐸𝑇𝑜.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

the work reported in this paper.



E. Mengi, O.A. Samara and T.I. Zohdi

Fig. 9. Crop model outputs.
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