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Abstract: Climate change must be the most serious environmental crisis of the present human
generation. While corresponding climate-smart agriculture (CSA) practices are emerging, the extent
to which CSA is profitable to farmers is unclear. In this paper, we focus on agrophotovoltaics (APV),
one of the CSA policies intensively pursued by the Korean government, to analyze the profitability
of APV and its implications for rural sustainability. First, we consider the total profit of farms
before and after APV installation by a region through generalized least squares (GLS) to verify that
APV has overall profitability through the region. Additionally, we estimate farms’ productivity by
region with a generalized method of moments (GMM) to compare with the results of the profitability.
We predict that APV installation will be more profitable than not installing, and the regions with
lower productivity will show higher profitability than other regions. The results are in line with
the prediction. The profitability of APV is verified in all regions, and the order of profitability by
region and productivity by region are opposite to each other. It suggests that regions with lower
productivity may have a higher preference for installing APV, implying the installation of APV
provides a new incentive to continue farming even in regions with low agricultural productivity.
These results have an important policy implication on rural sustainability since the implementation
of CSA could generate a sound and sustainable farming environment by addressing the challenges of
climate change.

Keywords: climate-smart agriculture; agrophotovoltaics; generalized least square; generalized
method of moments; crop productivity; rural sustainability

1. Introduction

Amidst growing concerns over climate change risks to agriculture, the International
Panel on Climate Change (IPCC) forecasts that global agricultural productivity needs to
increase by 60% to meet the current food demand. In response, the international agricultural
community has emphasized innovative approaches such as climate-smart agriculture (CSA)
to achieve food security and agricultural sustainability in the long run [1–3]. In particular,
South Korea’s food self-sufficiency rate is at 50.2% and could benefit from deploying
CSA technology to mitigate the impact of climate change on agricultural productivity,
especially in the nation’s rural areas [1]. Of the CSA technologies, renewable energy could
contribute to achieving all three pillars of CSA—improved productivity, resilient adaptation,
and greenhouse gas (GHG) emission mitigation—and improve energy use efficiency and
economic competitiveness in the agricultural sector [4].

The most prominent form of renewable energy technology is using solar energy, of
which the most compatible with farming are rural solar photovoltaics (PV) and agrophoto-
voltaics (APV) [5]. Whereas rural solar PV requires a single-use land area solely dedicated
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to solar power installation, APV allows mixed use of farmland for installing solar pan-
els over cultivated areas [6–8]. Therefore, APV improves land productivity by allowing
agricultural production and power generation to occur simultaneously [9–12]. Despite of
common concerns that APV impedes plant growth by blocking sunlight with the solar
panel, the agricultural output is not significantly affected since any excess sunlight above
the photo saturation threshold does not aid the photosynthesis process. APV could allocate
such excess sunlight towards energy generation and improve overall agricultural land
productivity [13]. Generally, farmers could use the electricity generated by installed solar
panels, or they could sell the electricity to earn an extra profit. To take advantage of APV’s
benefits, several countries began promoting APV installation. For instance, Germany began
the APV-RESOLA Project in 2015 to expand APV installation. Since its inception, the project
has been operating 194 kW of electricity on a one-third hectare APV facility with crops
such as wheat, potato, and celery [14]. France has also developed photovoltaic technology
that could be adapted to various crop varieties [15].

In South Korea, APV is one of the policies the government is most focused on. The
Ministry of Trade, Industry, and Energy (MOTIE) and the Ministry of Agriculture, Food,
and Rural Affairs (MAFRA) set APV as the top-priority dissemination technology among
CSA and have begun projects for APV development and distribution [16]. The MOTIE
administered the development of a standard system for solar power technology from 2017
to 2020 and led a study on standard models for APV and agricultural productivity by crop
type. MAFRA, on the other hand, developed a blueprint for constructing solar power
systems by region and by crop type. The national government’s recent announcement
of the 2030 Policy—a plan to raise the renewable energy mix ratio from 5% to 20% by
2030—further propelled APV distribution [16].

Despite such government efforts, however, APV installation has been exceptionally
low in South Korea. In 2018, only 110 million Korean Won (KRW) (0.1 million U.S. dollars
(USD)) of the 154 billion KRW (134.6 million USD) budgeted for APV installation-related
projects have been used for APV installation. In 2019, only 1.8% of the 40 billion KRW
(35.0 million USD) budget for APV installation was executed by the second quarter, indi-
cating a low participate of farmers. The reason for such low adoption may be related to
cost barriers, such as farmland conservation fees and high initial installation costs, further
complicated by the complex licensing process and uncertain productivity forecast [17,18].
Existing research either highlights the benefit of APV for improving crop productivity [6]
or accentuates APV’s negative impact on crop productivity [19]. These conflicting results
further confound farmers and increase their uncertain outlook toward APV installation.
Contrary to existing literature that primarily proposes new solar power modules and crop
cultivation methods and empirically assesses their impact, economic analyses of APV could
help alleviate farmers’ concerns over productivity related to APV installation [20,21].

This study first aims to estimate the agricultural output, production costs, and net
profit with and without APV installation of rice cultivating farms in South Korea by using
regional data from Seoul Metropolitan Area (SMA), Gangwon province, Chungcheong
province, Jeolla province, and Gyeongsang province from 2008 to 2018 (Figure 1). Moreover,
we estimate productivity by region to compare and verify the regional productivity order
with the regional profitability order. Our prediction is that the order of profitability by
region and productivity by region are opposite to each other. This means the installation of
APV can generate a new type of profit in regions with low productivity and consequently,
an incentive to continue farming could be guaranteed. Furthermore, this implies the
dissemination of CSA technology enhances rural sustainability. Ultimately, the study
tries to offer implications on regional policies for widely deploying agricultural solar
energy technology.
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Figure 1. Map of South Korea with regional identification.

In this direction, in Section 2, we highlight the previous papers about general CSA
and APV, as well as econometrical studies with estimating profitability and productivity;
in Section 3, we identify the methodologies in detail, show the data and explain the
limitations of our methodology; Section 4 presents the results of estimation and analysis;
finally, Section 5 is for further discussion and the conclusion.

2. Literature Review

CSA aims to increase productivity, reduce greenhouse gas emissions, and build re-
silient systems. The agricultural sector is largely land-related, and it is important to apply
CSA technology to improve the land’s carbon sink capacity. As examples of CSA technol-
ogy development and application, developing countries are actively researching disease
control, genetic livestock breed improvement, and conservation agriculture, and developed
countries are focusing on the development and introduction of advanced ICT technologies
for database construction.

Research on CSA technology can be divided into an inventory application option
that considers the agricultural characteristics of each country and an evaluation method
according to the case [22–25]. Ref. [26] addressed the application and barriers to the im-
plementation of CSA at a global level, with a case study of the geographical distribution
of CSA projects in Europe. Ref. [27] presented applicable CSA technologies and effects
by diagnosing the geographical characteristics of Nepal and Ref. [28] emphasized the
importance of setting the target area evaluation index in constructing the CSA program.
Ref. [29] investigated the reason for adaptation of CSA practices being lower than original
expectation despite awareness of their merits, thus emphasizing the social and cultural
limitations for adapting a climate change. Notably, the results of the farmer’s participatory
study in Ref. [30] show that CSA practices could be a better option for attaining higher
yields and farm profitability with sustained and improved environmental quality in small-
holder rice-wheat production systems of Eastern India and other similar agro-ecologies
of South Asia. Ref. [31] also illustrated the opportunity of CSA policies to build climate
change resilience of farmers through improving crop yield. Ref. [1] reviewed the tech-
nology inventory in consideration of Korea’s agricultural characteristics through expert
advice. Among numerous practices of CSA, APV improves land-use efficiency by optimally
utilizing technology–ecological and technology–economic synergies as a technology of
CSA [19]. However, Korea’s APV technology is still in the dissemination stage, and it
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is necessary to verify the effectiveness of the technology through economic analyses to
analyze the feasibility of APV technology.

Economic analyses of APV include cost–benefit analysis (CBA), levelized cost of
electricity (LCOE), and production cost estimation frameworks [19,20,32]. First, CBA
is the method to find alternatives to maximize present value and the analysis method
includes internal rate of return (IRR) analysis, payback period (PBP) analysis, return on
investment (ROI) analysis, and net present value (NPV) analysis. Ref. [33] analyzed the
IRR of photovoltaic installations, while Ref. [21] analyzed the profitability of simulated
APV systems in irrigated areas of southwestern Spain using the IRR analysis.

Second, LCOE represents the cost of electricity compared to electrical generation
over a complete cycle [5]. In detail, LCOE is the cost of electricity generation per kWh
unit per plant, computed as the quotient of the present value of the total cost per plant
over the present value of the total electrical generation per plant [34]. Germany’s Fraun-
hofer ISE estimated the LCOE as 0.093 Euro based on data obtained from its APV projects
conducted over the past twenty years [35]. Additionally, Ref. [19] calculated crop pro-
ductivity with and without AV using LCOE and provided an economically beneficial
price-to-performance ratio.

Finally, numerous agricultural studies have used the Cobb–Douglas production func-
tion to analyze economic efficiency and as well as productivity [34,36–40]. Especially,
Ref. [40] used the generalized method of moments (GMM) method and dummy variables
for intermediary goods to address endogeneity problems when using the Cobb–Douglas
production function to compute productivity. Additionally, Ref. [41] estimated produc-
tivity through a transformation of the production function formula after estimating the
production function. Also, the authors estimated rice production output using a stochastic
frontier Cobb–Douglas production function and analyzed efficiency changes; for this study,
cultivation area, labor time, agricultural machinery input, and fertilizer input were used as
explanatory variables.

Furthermore, other methods besides the Cobb–Douglas production function are also
used, such as the translog production function [42]. Ref. [43] estimated the technical effi-
ciency of rice production farms through translog stochastic frontier production functions
and analyzed the factors of technical inefficiency. In this model, the variables used to
estimate rice production were labor input, agricultural machinery input, land input, fer-
tilizer input, and pesticide input. As for production costs, Ref. [22] used panel data to
estimate the rice production cost function using the two-factor fixed effect and random
effect models, concluding that rural regions’ scale economy is dependent on the scale of
its production output. The estimation process for deriving productivity and efficiency
typically generates the production output, as conducted by Ref. [44], which estimated the
rice yield under partial shading conditions of farming solar panels and found that shading
from APV reduced rice yield.

3. Methodology
3.1. Estimation Model Specification

APV installations reduce the total amount of sunlight that crops can receive, resulting
in a decrease in production. At the same time, farmers generate electricity from APV which
can be converted into sellable credit. This means APV installation affects the total profit
of farmers in two ways, reducing agricultural income and adding new income by selling
electricity credits from APV.

In this paper, we will first verify the difference in farmers’ profit before and after
the installation of APV. To analyze how this differs by region, agricultural income and
information about the APV of each region are necessary needed. Information about APV
could be found in the data, and we will estimate the production function and the cost
function of farms for each region using the generalized least squares (GLS) method verifying
the total profit after APV installation by region consequently.
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Next, we will also estimate the crop productivity of each region through the general-
ized method of moments (GMM) method, to confirm our results on the profitability of APV
installations and to suggest policy implications for rural sustainability. Our prediction is
that the lower the productivity of a region, the higher the profit from the APV installation.
Therefore, we expect the order of productivity by region and the order of profitability
should be reversed implying that regions with low productivity prefer the installation of
APV more.

Therefore, our research hypotheses are as follows. First, comparing before and after
installing APV, APV installment is more profitable to farmers in every region. Second, the
order of profitability by region and the order of productivity by region is opposite to each
other. In other words, the lower productivity region gains more profit by installing APV,
resulting in a higher preference for those regions to install APV.

A. Agricultural Output and Costs

This paper uses GLS model for estimation to obtain a production output function with
important explanatory variables. In addition, the interaction terms of some explanatory
variables and regional dummies are included to analyze the impact of changes in those
variables depending on regions of production.

The linear model for estimating the agricultural production output is:

Yij = α + γ′Vij + δ′Wij + β′DjX′ij + µDj + θT + εij (1)

where Yij is the farm i’s primary agricultural production output and represents rice yield
at region j where farm i is located. Vij represents a vector of basic explanatory variables
consisting of Ai, Li, Ki, and Mi, similar to the past study of [41]. Ai is rice cultivation area,
Li is labor input, Ki is capital input, and Mi is a vector of four kinds of intermediary input.

Wij is a vector of additional control variables included at regression to control for the
discrepancy in output per farm and per region, containing Dpayi, Agei, Machj, CultRatej,
ElderRatej, non-CultRatej, and AgriRatej. Dpayi is the amount of farm subsidy received by
the farm, Agei is the age of the farmer surveyed, and Machj is the number of agricultural
types of machinery counted at region j. Unlike past studies of Ref. [45] and Ref. [43] that
used farm machinery input in form of cost of machines or capital input as the variable
values, this study used the number of farm machinery for variable Machj. CultRatej is the
ratio of rice cultivation area used in the current year to that of the previous year, AgriRatej
is the ratio of agricultural sector population, ElderRatej is the ratio of population over
65 years of age to total agricultural sector population, and non-CultRatej is the ratio of
fallow land to total farmland.

Among Wij, ElderRatej, and non-CultRatej were included to analyze the suitability
of utilizing CSA technology for local extinction and rural sustainability. The coefficient of
these variables indicates how rice production is associated with the region’s proportion of
the elderly agriculture sector population and fallow land area. To observe the difference
between regions, this study included an interaction term DjX′ ij, where X′ ij consists of
ElderRatej, non-CultRatej, and AgriRatej, and region dummy variable Dj which is from
Area 1 to Area 4. Our focus is the difference between regions in ElderRatej and non-
CultRatej. Additionally, AgriRatej was added with the assumption of a high correlation
between rural areas and local extinction and therefore improving the model validity. Finally,
T is the year dummy variable and εij represents the error term. Every variable is converted
in logarithm form prior to putting into vector form unless it is not a dummy variable.
Therefore, all coefficients are interpreted as the elasticity that how agricultural output
changes with the change of explanatory variables.

For the production cost, we assume that cost function (2) was formulated using the
same explanatory variables as (1). Cij represents the production cost for farm i at region j,
and other variables are same as defined above.

Cij = α + γ′Vij + δ′Wij + β′DjX′ij + θT + µDj + εij (2)
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B. Productivity

The productivity is defined as Git that moves production technology f as in (3) [41].
Assuming the Cobb–Douglas production function, (3) can be converted to the production
function of the farm as (4).

Qit = Git f (Rit, Oit, Uit, Hit) (3)

ln Qit = β0 + βr ln Rit + βo ln Oit + βu ln Uit + βh ln Hit + vit (4)

where Qit is the output of farm i at year t, Rit is a capital, Oit is a labor, Uit is a land, and Hit
is an intermediary input. Hereafter, output Q and input variables R, O, U, and H represent
a log-transformed value. The last term, vit, is a probabilistic error term. The productivity of
farms that is not generally observable is included in this term. Therefore, productivity Pit
can be estimated in the same way as in (5) by OLS of (4) [46].

ln Pit = ln Git = β̂0 + v̂it = Q−
(

β̂rRit + β̂oOit + β̂uUit + β̂h Hit
)

(5)

The error term vit does not consist only of stochastic components. That is, vit can
be decomposed into εit, which is a stochastic element, and sit, which is a non-stochastic
element. Here, εit represents a measurement error or a random shock that may occur
during the production process. On the other hand, sit represents the characteristics of farm
households, the predictable productivity shock of farms, or the ability of farms to respond
to them [47]. Reflecting on this point, (4) can be re-expressed as (6) below.

Qit = β0 + βrRit + βoOit + βuUit + βhHit + εit + sit (6)

However, farmers can predict sit before defining input Oit and Hit. This causes bias
in estimation since Oit and Hit are not independent of vit which includes sit. Therefore,
the new equation using instrumental variables to use GMM is (7) [48]. Variables that
have endogeneity, Oit and Hit, were replaced with Oit−1 and Hit−2, respectively. Here, Dj
represents the regional dummy variable and b is the lagged variable.

ln Qit = β0 + βr ln Rit + βo ln Oit + βu ln Uit + βh ln Hit + g[h(�)]

+βtb + βttb2 + βrjDj + φit

where g[h(�)] =
3
∑

s=0

3−s
∑

u=0

3−s−u
∑

v=0
βsuvRs

t−1Uu
t−1Hv

t−1

(7)

Farm productivity Pit is estimated with (8) after estimating (7).

ln Pit = ln Qit − β̂r ln Rit − β̂o ln Oit − β̂u ln Uit − β̂h ln Hit

= β̂0 +
3
∑

s=0

3−s
∑

u=0

3−s−u
∑

v=0
β̂suvKs

t−1 Au
t−1Mv

t−1 + β̂tb + β̂ttb2 + β̂rjDj + φ̂it
(8)

3.2. Data Sources

A. Data for Agricultural output and production costs

To estimate output and production costs, this study utilized Agricultural Production
Costs Survey (APCS) data provided by Microdata Integrated Service (MDIS) and data
from the Korean Statistical Information Service (KOSIS) and the MAFRA. We identified
13,851 farms that indicated rice as their primary crop from 2008 to 2018 from the APCS,
which has the largest dataset in Korea with the longest period of data (Table 1). The original
monetary unit in data used in estimation was KRW, deflated by Korea’s 2018 Consumer
Price Index (CPI) to account for price fluctuation. After that, we converted the monetary
unit of statistics in tables from KRW to USD according to the annual average exchange rate
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in 2021 (1 USD=1144.3 KRW). Tables 1 and 2 describe variables and statistics of output and
production cost estimation variables.

Table 1. Description of variables used in agricultural output and costs estimation.

Variable Variable
Description Detailed Description Sources

Y Production output Primary product quantity

Agricultural
Production Costs

Survey

C Production cost The production cost of rice

A Land Area of rice cultivation

L Labor Total labor input

K Capital

Sum of agricultural machinery costs,
farming facility costs, repair costs,
capital costs (fixed), and production
maintenance equipment costs

M Intermediary
input

M1: Seedlings/M2: Fertilizer/
M3: Pesticide/M4: Photothermal
energy

Age Farmer age 1: Under 30/2: 30–39/3: 40–49/
4: 50–59/5: 60–67/6: Over 70

Dpay Subsidy Sum of the previous year’s fixed
subsidy and adjusted subsidy MAFRA

Mach
Possession of
agricultural
machinery

Mach1: Number of farming tractors
Mach2: Number of farm masters
Mach3: Number of motorized rice
transplanters
Mach4: Number of combine
harvesters

KOSIS

CultRate Cultivated land
Percentage of the previous year’s
cultivated land from the current
year’s arable land

AgriRate People in the
agriculture sector

Percentage of population in the
agricultural sector from the total
population

ElderRate Elderly
population

Percentage of population over age 65
from the total agricultural sector
population

non-CultRate Fallow land Percentage of fallow land of total
cultivated land

Year Year dummy Year dummy for years 2009 to 2018

Agricultural
Production Costs

SurveyArea Regional dummy

Reference Area (SMA): Seoul
Metropolitan Area, including
Gyeonggi and Incheon
Area 1 (Gangwon): Gangwon
Area 2 (Chungcheong): Chungbuk,
Chungnam, Daejeon
Area 3 (Jeolla): Jeonbuk, Jeonnam,
Gwangju
Area 4 (Gyeongsang): Gyeongbuk,
Gyeongnam, Daegu, Busan, Ulsan
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Table 2. Summary statistics of agricultural output and costs estimation variables.

Variable Variable
Description Unit Average Std.

Dev. Max. Min.

Y Production
output kg 8642 13,714 212,924 450

C Production cost 1 USD 7459 11,211 175,416 626

A Land m2 12,767 19,788 355,073 1065

L Labor Hour 163 236 6054 3

K Capital 1 USD 62,799 140,703 3,365,506 1

M1

Intermediary
input Count

92 159 3001 1

M2 5036 10,656 457,423 1

M3 10,902 25,137 1,508,290 1

M4 174 872 58,598 1

Age Farmer age Categorical 5.020 0.945 6 1

Dpay Subsidy 1 USD 1891 3078 50,824 123

Mach1
Possession of
agricultural
machinery

Count

32,365 10,495 48,368 456

Mach2 48,159 28,253 116,593 1048

Mach3 29,045 11,917 56,830 402

Mach4 9574 3358 13,671 162

CultRate Cultivated land % 108.3 11.7 133.7 82.9

AgriRate
People in the
agriculture
sector

% 0.289 0.139 0.580 0.002

ElderRate Elderly
population % 38.2 5.6 49.2 20.4

non-CultRate Fallow land % 0.018 0.009 0.061 0.005

To estimate productivity, this study formed panel data which is necessarily needed
due to the lagged variables in the model, of farmers who consecutively indicated rice as
their primary crop from 2013 to 2017 in the APCS. With 759 identified farms per year, a
total of 3795 farm data were used. The descriptive statistics of the variables associated
with estimating productivity are detailed in Tables 3 and 4. Unlike output and production
cost estimation, productivity estimation required monetary value data instead of output
and input quantity data. To minimize the bias, all data except labor and land, which were
measured in acreage instead of monetary values, were adjusted for price fluctuation using
the Farm Sales Price Index and Farm Consumption Price Index.

Table 3. Description of variables used in productivity estimation.

Variable Variable
Description Detailed Description Sources

Q Production output Sum of primary product quantity

Agricultural
Production

Costs Survey

U Land Area of rice cultivation

O Labor Sum of household labor and hired labor

R Capital
Sum of agricultural machinery costs, facility
usage costs, repair costs, capital costs (fixed), and
production maintenance equipment costs

H Intermediary input Sum of seedlings costs, fertilizer costs, pesticide
costs, photothermal energy costs
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Table 4. Summary statistics of productivity estimation variables.

Variable Variable
Description Unit Average Std.

Dev. Max. Min.

Q Production output kg 18,224 27,627 361,047 1042

U Land m2 16,878 25,283 283,502 1981

O Labor Hour 180 266 3927 9

R Capital 1 USD 1032 2125 38,772 1

H Intermediary input 1 USD 1289 2152 31,939 8

B. Costs and Subsidies for APV

A survey by the National Agricultural Cooperative Federation’s Fourth Industrial
Revolution Research Team conducted in 2018 showed that installing APV that produces
100 kW of electricity (per 1322 m2) costs 152,466 USD, excluding site maintenance costs
(Table 5).

Table 5. APV installation costs breakdown.

Category Amount (USD)

Licensing Costs

Document preparation and approval process facilitation 6989

Grid connection fee 7514

Farmland conservation fee 10,999

Equipment
Costs Photovoltaic module/Inverter/Connecter box 63,282

Construction
Costs

Civil engineering/Module
installation/Construction/Electrical installation 63,683

Total 152,467
Source: National Agricultural Cooperative Federation’s Fourth Industrial Revolution Research, 2018.

In addition, the Korea Energy Corporation’s Renewable Energy Center offers long-
term low-interest loans according to the government’s support policy. It is an average
interest rate of 1.75% and ten-year installment payments with a five-year grace period
financial product to farmers who participate in APV installation projects [49].

3.3. Limitation of the Methodology

At productivity estimation, we used intermediate inputs as an instrument variable of
productivity [50] to control the endogeneity problem caused by the correlation between
Oit, Hit, and vit at (4) [50,51]. To use intermediate inputs as an instrument variable, the
following three assumptions should be met:

Assumption (1): The demand for intermediate inputs (Hit), which is an instrument
variable, is determined by the variables that are fixed in shorter (Rit, Uit) and productivity
(sit) of farms as shown in (9).

Hit = Hit(Rit, Uit, sit) (9)

Assumption (2): The instrument variable (Hit) has a property of strictly monotonic
increasing with respect to the productivity (sit). Due to this property, (9) can be substituted
with the inverse function of sit as (10).

sit = H−1(Rit, Uit, Hit) = h(Rit, Uit, Hit) (10)
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Assumption (3): Productivity (sit) has the same relationship as (11) with the productiv-
ity of the previous year (sit−1) by the first-order Markov process. ξit is a random variable
meaning the innovation component. (12) can be obtained by substituting (10) into (11).

sit = E[sit|sit−1] + ξit = g(sit−1) + ξit (11)

sit = g[h(Rit−1, Uit−1, Hit−1)] + ξit (12)

When all assumptions are taken into account, (6) is converted to (13), and the error term
φit = ξit + εit satisfies the orthogonal condition of (14). Function g[h(Rit−1, Uit−1, Hit−1)]
is a cubic polynomial that described detailly in (7).

Qit = β0 + βrRit + βoOit + βuUit + βh Hit + g[h(Rit−1, Uit−1, Hit−1)] + φit (13)

E[φit|Rit, Uit, Rit−1, Oit−1, Uit−1, Hit−1, · · · , Ri1, Oi1, Ui1, Hi1] = 0
where t = 2, · · · , T

(14)

To use generalized method of moments, we use Oit−1 and Hit−2 as an instrument
variable for endogenous variable Oit and Hit, respectively. Rit and Uit themselves function
as an instrument variable, and we used Hit−2 for intermediary input since Hit−1 is already
included in g[h(�)]. By adding the regional dummy variable Dj to explain productivity
that varies depending on local soil quality and climatic conditions and lagged variable b
that also may affect productivity, the final Equation (7) and consequently (8) is obtained.

This methodology can control endogeneity effectively, but the disadvantage is that
we cannot use all the data applicable since we took lagged variable as an instrument
variable. Moreover, it was impossible to apply the same method to estimate agricultural
output and cost because the structure of the data was different from the one used to
estimate productivity.

For the other statistical properties, normality may not be a primary concern [52,53]. In
addition, heteroscedasticity can cause a type 2 error, in which a coefficient indeed significant
is derived as insignificant. However, as we will show in the next chapter, the results are
consistent with our initial predictions and hypotheses. Therefore, we conclude that there is
no serious problem from heteroscedasticity in our results. Additionally, multicollinearity is
another issue that might cause a type 2 error, so it can be considered in the same context as
heteroscedasticity. Variance inflation factor (VIF) was a bit high in our regression results,
yet this is due to interaction terms with other variables in our model. However, it is not a
major problem since the p-value of the interaction term is not affected by multicollinearity
and the significance is robust.

4. Results

A. Profitability

The estimation results of rice agricultural output and costs are detailed in Table 6.

Table 6. Results of agricultural output and costs estimation.

Variable
Production Output Production Costs

Estimator Std. Dev. Estimator Std. Dev.

ln Y 0.991 *** 0.008 0.385 *** 0.024

ln L −0.003 0.002 0.207 *** 0.006

ln K 0.001 0.001 0.241 *** 0.003

ln M1 −0.004 *** 0.001 0.015 *** 0.004

ln M2 0.005 *** 0.001 0.057 *** 0.003



Land 2023, 12, 90 11 of 20

Table 6. Cont.

Variable
Production Output Production Costs

Estimator Std. Dev. Estimator Std. Dev.

ln M3 0.006 *** 0.001 0.013 *** 0.002

ln M4 −0.002 ** 0.001 −0.022 *** 0.003

ln Dpay 0.017 ** 0.008 −0.097 *** 0.023

ln Age 0.039 *** 0.007 0.189 *** 0.019

ln Mach1 0.133 ** 0.053 0.364 ** 0.148

ln Mach2 −0.037 0.024 −0.161 ** 0.069

ln Mach3 0.156 *** 0.032 0.092 0.090

ln Mach4 −0.196 *** 0.046 −0.239 * 0.130

Year2009 0.019 *** 0.008 0.047 ** 0.021

Year2010 −0.118 *** 0.008 0.031 0.023

Year2011 −0.048 *** 0.010 0.192 *** 0.027

Year2012 −0.063 *** 0.011 0.39 *** 0.031

Year2013 −0.003 0.012 0.453 *** 0.035

Year2014 0.086 *** 0.015 0.521 *** 0.042

Year2015 0.126 *** 0.016 0.523 *** 0.045

Year2016 0.110 *** 0.019 0.529 *** 0.055

Year2017 0.106 *** 0.021 0.589 *** 0.061

Year2018 0.124 *** 0.023 0.745 *** 0.064

Area1 1.189 ** 0.473 2.037 1.335

Area2 1.043 *** 0.279 0.719 0.786

Area3 2.196 *** 0.256 0.305 0.721

Area4 2.454 *** 0.277 0.147 0.783

ln AgriRate −0.093 *** 0.018 −0.113 ** 0.051

ln AgriRate·Area1 −0.176 ** 0.083 0.676 *** 0.235

ln AgriRate·Area2 0.054 * 0.028 0.050 0.080

ln AgriRate·Area3 0.066 *** 0.019 0.089 * 0.054

ln AgriRate·Area4 0.101 *** 0.017 0.132 *** 0.048

ln CultRate −0.213 *** 0.043 −0.247 ** 0.121

ln ElderRate 0.164 *** 0.059 −0.331 ** 0.168

ln ElderRate·Area1 −0.332 *** 0.105 −0.456 0.296

ln ElderRate·Area2 −0.268 *** 0.062 −0.169 0.175

ln ElderRate·Area3 −0.508 *** 0.056 −0.021 0.159

ln ElderRate·Area4 −0.528 *** 0.062 0.033 0.176

ln nonCultRate −0.046 *** 0.012 0.053 0.034
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Table 6. Cont.

Variable
Production Output Production Costs

Estimator Std. Dev. Estimator Std. Dev.

ln nonCultRate·Area1 0.034 0.027 −0.121 0.076

ln nonCultRate·Area2 −0.051 *** 0.015 −0.070 0.044

ln nonCultRate·Area3 0.004 0.015 −0.068 0.043

ln nonCultRate·Area4 0.043 *** 0.014 −0.054 0.039

Constant −1.635 *** 0.313 8.537 *** 0.883

Observation 13,851 13,851

Wald Statistics 466,476.7 39,926.4

Prob > χ2 0.000 0.000

Log-likelihood 6026.8 −8342.2
Notes: ***p<0.01, ** p<0.05, * p<0.10.

The regional average values of each variable were used in the estimation procedure to
calculate the regional rice production and prices (Table 7). Similarly, the regional average
rice sales price was used since the sales price of rice varied across regions. When calculating
farm revenue, which is comprised of revenue from sales of primary crops (rice) and
secondary or by-products (hay, etc.) revenue from secondary products was not included
since its proportion to total revenue was minuscule. Instead, the value of secondary product
revenue was computed as a product of revenue from rice sales and the ratio of primary
crop price to secondary crop price from 2018, which was 3.756% (Table 8).

Table 7. Average estimators in agricultural output and costs by region in 2018.

Variable SMA Gangwon Chungcheong Jeolla Gyeongsang

A 13,005 9893 11,167 17,577 10,263

L 141.7 130.2 134.1 192.2 125.7

K 41,031 59,897 51,466 52,028 37,753

M1 77.2 65.9 79.3 149.9 68.2

M2 4100 2339 3168 7621 2210

M3 6722 7938 14,010 15,481 6735

M4 264.4 229.5 346.1 424.2 253.9

Dpay 2351 1820 2065 3393 1932

Age 4.050 4.097 4.034 4.240 4.286

Mech1 34,885 20,274 28,747 37,212 39,497

Mech2 30,060 19,886 40,486 39,364 78,250

Mech3 19,514 11,352 19,621 21,819 30,261

Mech4 8007 3479 7693 10,680 10,567

AgriRate 0.081 0.306 0.354 0.512 0.249

CultRate 94.1 91.7 95.2 124.4 110.5

ElderRate 38.4 42.2 45.7 47.7 47.1

non-CultRate 0.021 0.031 0.016 0.009 0.025
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Table 8. Agricultural profit without APV installation (USD).

SMA Gangwon Chungcheong Jeolla Gyeongsang

Rice yield 8801 6282 7952 11,689 6957

Rice price 1.443 1.386 1.409 1.426 1.387

Revenue 12,702 8705 11,206 16,666 9646

Secondary product
revenue 477 327 421 626 362

Production Costs 9767 7844 9258 12,746 7889

Agricultural profit 3412 1188 2369 4546 2119

To estimate potential revenue after APV installation, this paper established the follow-
ing assumptions:

Assumption (1): Farmers will install APV that generates 100 kW per 1322 m2 of
arable land.

Assumption (2): Solar panels generate approximately 3.5 h per day evenly throughout
the year and its efficiency declines by 1% per year over twenty years, which is the expected
durability of APV.

Assumption (3): The unit price of credit for electricity generated from APV is 0.151 USD
per 100 kW, the most recent price as specified by the Korean government in New Renewable
Energy Center Notice No. 2019-25.

Assumption (4): 90% of installment cost would be covered with a long-term low-
interest loan with a 1.75% interest rate, a ten-year installment payment period, and a
five-year grace period.

Assumption (5): About 15% of agricultural output is deducted due to the decreased
sunlight by APV installment.

The estimated final profit after the APV installment is detailed in Table 9. There was no
change in the crop production costs, and the maintenance cost of APV was not considered.

Table 9. Total profit with APV installation (USD).

SMA Gangwon Chungcheong Jeolla Gyeongsang

Rice yield 7481 5340 6759 9936 5913

Rice price 1.443 1.386 1.409 1.426 1.387

Revenue 10,795 7401 9524 14,168 8202

Secondary product
revenue 406 278 358 532 308

Production costs 9767 7844 9258 12,746 7889

Agricultural profit 1434 −165 624 1954 621

Profit by APV credit 9545 9545 9545 9545 9545

Total profit 10,979 9380 10,169 11,499 10,166

Comparing the regional total profit and agriculture activity-based profit before in-
stalling APV revealed that profit increases by at least about 7000 USD in all regions after
APV is installed. The regions with the greatest difference in profit with and without APV
were, in order, Gangwon, Gyeongsang, Chungcheong, SMA, and Jeolla (Table 10).
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Table 10. Difference in profit between APV installation by region.

Gangwon Gyeongsang Chungcheong SMA Jeolla

Difference (USD) 8192 8047 7800 7567 6953

B. Productivity

Assuming that the magnitude of profitability of APV by region and the preference
for APV installment is proportional, the study estimated farm productivity using GMM in
order to assess the relationship between regional productivity and the preference for APV
installation. The average of each regional variable was computed using the 2017 data to
estimate the regional productivity values (Tables 11 and 12).

Table 11. Results of the productivity estimation.

Variable Estimator Std. Dev

ln Lt −0.028 0.045

ln Mt −0.487 *** 0.173

ln Kt 0.218 *** 0.077

ln At 1.033 *** 0.031

ln Kt−1 1.134 * 0.620

ln K2
t−1 −0.031 0.042

ln K3
t−1 0.002 0.001

ln At−1 0.546 1.181

ln A2
t−1 0.436 *** 0.159

ln A3
t−1 −0.014 ** 0.006

ln Mt−t 1.019 0.904

ln M2
t−1 0.087 0.111

ln M2
t−1 0 0.004

ln Kt−1· ln At−1 −0.165 0.118

ln Kt−1· ln A2
t−1 0.005 0.006

ln Kt−1· ln Mt−1 (omitted)

ln Kt−1· ln M2
t−1 −0.010 0.007

ln At−1· ln K2
t−1 −0.009 * 0.005

ln At−1· ln Mt−1 −0.509 ** 0.208

ln At−1· ln M2
t−1 0.011 0.010

ln Mt−1· ln K2
t−1 0.002 0.005

ln Mt−1· ln A2
t−1 −0.006 0.010

ln Kt−1· ln At−1· ln Mt−1 0.022 0.014

time −0.318 * 0.174

time2 0.067 * 0.038

Area1 −0.210 *** 0.035

Area2 −0.164 *** 0.030
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Table 11. Cont.

Variable Estimator Std. Dev

Area3 −0.071 *** 0.027

Area4 −0.201 *** 0.037

Constant 0 .

Observations 2277

R-squared 0.847
Notes: ***p<0.01, ** p<0.05, * p<0.10.

Table 12. Productivity by region.

Jeolla SMA Chungcheong Gyeongsang Gangwon

Productivity (ln P) 10.866 10.860 10.664 10.603 10.599

The estimation results reveal the highest productivity in Jeolla, followed by SMA,
Chungcheong, Gyeongsang, and Gangwon, which are in exactly the inverse order of
regional productivity for APV installment. This finding indicates that regions with low
productivity have a high preference for APV installation. It is because although the crop
harvest is slightly declined due to the installation of APV, the additional income through
credit sales obtained from the APV is more profitable to low-productivity regions. In other
words, this implies that even in regions where incentives to continue farming are relatively
small, the installation of APV provides a strong economic incentive to continue the farming
by providing a new source of income.

C. Rural Sustainability

In terms of local extinction and rural sustainability, Table 13 shows the coefficient and
average of ElderRatej and non-CultRatej by region, which are variables that represent the
feasibility of using CSA technology to address local extinction and rural sustainability. Both
the ratio of the aged population and the ratio of fallow land are important factors that affect
agricultural profits, especially when considering characteristics of rural areas in Korea, the
labor-oriented and aging. Since the reference region was SMA, coefficients of ElderRatej
and non-CultRatej in Table 6 are same as coefficients of ElderRatej and non-CultRatej of
SMA. Other regions’ coefficients are represented by considering the reference region and the
interaction term of reference region and regional dummy variable. For instance, ElderRatej
coefficient of Gangwon was calculated by sum of ElderRatej and ln ElderRate·Area1 in
Table 6.

Table 13. Coefficients of the elderly population and fallow land by region.

ElderRate Non-CultRate

Coefficient Average Coefficient Average

SMA 0.164 38.4 −0.046 0.021

Gangwon −0.168 42.2 −0.012 0.031

Chungcheong −0.104 45.7 −0.097 0.016

Jeolla −0.344 47.8 −0.042 0.009

Gyeongsang −0.364 47.1 −0.003 0.025

The coefficients of ElderRatej suggest that regions with the highest production out-
put loss as the elderly population increases are, in order, Gyeongsang, Jeolla, Gangwon,
Chungcheong, and SMA. This result parallels the order of regional preference for APV
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installation except for Jeolla, which may be due to its existing high input of land, labor,
capital, and elderly agricultural sector workforce as shown in its regional average estimates
(Table 7). In addition, the positive coefficient of ElderRatej in SMA could be explained
by the relatively small agricultural sector population. The effect of an increase in the
elderly population among the agricultural sector workforce is generally negative, but it
also contributes to the total increase in the agricultural workforce. In SMA, the positive
effect of resultant increase in the agricultural population due to the increase in the elderly
farming population is greater than the negative effect.

As for the impact of fallow land area on productivity, the regions with the smallest
coefficient of non-CultRatej were, in order, Chungcheong, SMA, Jeolla, Gangwon, and
Gyeongsang. Compared to the order of regional preference for APV installation, the order
of Gangwon and Gyeongsang appears relatively low. Such discrepancy might be due to
the low preference for rice farming in those regions. In fact, when comparing the average
values by region in Gyeongsang and Gangwon with Jeolla and Chungcheong where are
the centers of the rice farming in Korea, the percentage of fallow land is much higher
in Gyeongsang and Gangwon than in Jeolla and Chungcheong. However, the absolute
values of non-CultRatej coefficient are quite larger in Jeolla and Chungcheong. This finding
demonstrates that even small changes in the proportion of fallow land could affect rice
productivity in Chungcheong and Jeolla, where rice cultivation is widespread. In contrast,
the effect of change in the proportion of fallow land on rice productivity is minuscule in
Gangwon and Gyeongsang, where the rice is not commonly cultivated.

5. Discussion and Conclusions

This study estimated regional profitability and productivity with regard to the install-
ment of APV in rice cultivating farms in South Korea. We estimated agricultural production
and cost function with GLS and compared the farm income before and after APV installa-
tion considering the costs and benefits of APV installation. The results verified that APV
installment is profitable in every region and the difference before and after installation is
greatest in Gangwon, followed by Gyeongsang, Chungcheong, SMA, and Jeolla, in order.

These results have the same context as studies that show that small farms with low
agricultural profitability and productivity are likely to accept new technology [29,30,54]. In
order to improve the productivity of small farms, it is necessary to apply the cultivation
method according to new environmental factors or technological situations [54,55]. How-
ever, small farmers are relatively likely to be unable to cover the initial costs of introducing
new technologies. In addition, small-scale rice farms need a government support through
incentives because it is difficult to flexibly change cultivation methods or farm management
methods in response to changes in external conditions [29,30].

Moreover, we estimated regional productivity to compare and find the relationship
with regional profitability. The estimation result shows the highest productivity in Jeolla,
followed by SMA, Chungcheong, Gyeongsang, and Gangwon, which are in exactly the
inverse order of regional productivity. The opposite order means that regions with lower
productivity prefer additional income through credit sales from APV installations. In
addition, it implies that economic incentives for continuing agricultural activities could be
provided by APV installment though a region has lower productivity that originally has
little incentive to continue farming.

Furthermore, this study assessed its potential impact in addressing local extinction
and rural sustainability by comparing the regional proportion of the elderly agriculture
sector labor, ElderRatej, and fallow land, non-CultRatej. Gyeongsang exhibited the high-
est agricultural output loss per 1% increase in the elder population, followed by Jeolla,
Gangwon, Chungcheong, and SMA. In the result of this study, the order of regions most
impacted by an increase in the elderly population reflects the inverse order of regions with
the highest productivity, except Jeolla. As discussed previously, this exception may be due
to Jeolla’s exceptionally high labor and land input for agricultural activity compared to
that of other regions. On the other hand, Chungcheong exhibited the highest agricultural
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output loss per 1% increase in the proportion of fallow land, followed by SMA, Jeolla,
Gangwon, and Gyeongsang. In particular, Gyeongsang and Gangwon exhibited the least
output loss, which may be due to the low prevalence of rice farming in the two regions
compared to that of other regions observed.

These results imply that efficiency may decrease if aging continues, which act as a
factor that hinders the productivity of rice production [54,56]. Additionally, if the aging
of farmers continues, there is a possibility that the productivity of rice production will
continue to decrease [54]. Meanwhile, Ref. [56] emphasized that the reason farmers apply
for CSA is not because of food security. This implies that policymakers need to educate
farmers about the concepts and effects of CSA in order to promote CSA [54].

This study presents several policy implications. First, this study verified that farmers
in low-productivity regions are more likely to accept APV installments. This shows the
government can consider the direction of promoting and spreading the application of CSA
technology focused on farms in those regions, especially smallholder farmers who are
more vulnerable to financial matters. Likewise, government policy could help address
the smallholder farmer’s income problem facing with multiple production and marketing
challenges [57]. However, it is difficult for small farmers to apply CSA technology to
actual agricultural sites because of initial expenditure and high maintenance costs [1–4].
Therefore, the government needs to support the initial cost of introducing new technologies
to small farmers because economic factors are one of the main reasons why it is difficult
to apply CSA [26,58]. The government should give farmers information on financial
instruments such as sharing information on education and promotion of CSA, microfinance,
and incentive support [1,23–25]. Second, this study suggested that aging can be a factor
that hinders rice productivity. The issue of aging is also closely related to the issue of food
security, and policymakers need to emphasize and educate farmers on the importance of
climate change and food security, and the value of CSA as a response to it.

The limitations of this study are as follows. First, in the study, the regional unit of
analysis was limited to a metropolitan area or province level due to data availability. If
the geographical unit of analysis is subdivided in the future, the regional characteristics of
agricultural activities can be better reflected. Second, this study assumed that the conditions
related to APV installation were uniform between regions due to data limitations, so the
costs and benefits of APV development were the same for all the regions. Additionally,
maintenance cost was not considered. However, solar power can cost not only high initial
installation costs but also additional costs to repair or replace panels on the APV [59]. On
average, a solar panel costs about $225 to $375 for physical reasons such as lightning or
hail, or self-defections, which could be able to result in additional costs [60]. Additionally,
there is an applicability issue for APV, and a study on the economic evaluation of APV
is necessary [19]. Future studies could obtain more precise and meaningful results by
including detailed conditions of APV installation and energy generation, such as installation
area. Finally, this study showed that even small changes in the proportion of fallow land
could affect rice productivity in the regions where rice cultivation is widespread, but the
effect of change in the proportion of fallow land on rice productivity could be minuscule in
the regions where rice is not commonly cultivated. Therefore, expanding the scope of other
primary crop products such as potatoes, radishes, onions, and cabbages in future studies
will help you understand the economic effects of APV.

CSA is closely related to the economy in terms of productivity and changes in produc-
tion cost, and also closely related to environmental aspects such as farm acceptability and
convenience, greenhouse gas reduction, soil health, and energy resource minimization [2–4].
For CSA technology to be introduced and expanded to rural areas, it is important to link it
with policies considering economic incentives, promotion, and education [1–3], and this
study suggested that incentives for introducing CSA are highly needed, focusing on regions
with relatively high preference and acceptance. Future research will be able to help extend
the application of CSA technologies, including APVs, and further contribute to the ultimate
goal of CSA.
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