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Abstract
Agrivoltaic systems that locate crop production and photovoltaic energy generation on the same
land have the potential to aid the transition to renewable energy by reducing the competition
between food, habitat, and energy needs for land while reducing irrigation requirements.
Experimental efforts to date have not adequately developed an understanding of the interaction
among local climate, array design and crop selection sufficient to manage trade-offs in system
design. This study simulates the energy production, crop productivity and water consumption
impacts of agrivoltaic array design choices in arid and semi-arid environments in the Southwestern
region of the United States. Using the Penman–Monteith evapotranspiration model, we predict
agrivoltaics can reduce crop water consumption by 30%–40% of the array coverage level,
depending on local climate. A crop model simulating productivity based on both light level and
temperature identifies afternoon shading provided by agrivoltaic arrays as potentially beneficial for
shade tolerant plants in hot, dry settings. At the locations considered, several designs and crop
combinations exceed land equivalence ratio values of 2, indicating a doubling of the output per
acre for the land resource. These results highlight key design axes for agrivoltaic systems and point
to a decision support tool for their development.

1. Introduction

Agrivoltaics, the practice of co-locating photovol-
taic arrays and agricultural production on the same
land, is of growing interest as the world trans-
itions to renewable energy (Macknick et al 2022).
Historically, more than half of the land used for
photovoltaic production is converted from crop pro-
duction (Kruitwagen et al 2021), and photovolta-
ics could occupy 10% or more of the land currently
used for crops in some regions by 2050 (OECD/IEA
2021, van de Ven et al 2021). Agrivoltaics presents the
opportunity to reduce the competition between food
and energy needs for scarce land resources (Dupraz
et al 2011, Barron-Gafford et al 2019). Results from
initial agrivoltaic pilot projects suggest system bene-
fits from interactions between the crop and solar array

can make agrivoltaics competitive relative to conven-
tional solar arrays and, in some cases, conventional
agriculture (Amaducci et al 2018, Barron-Gafford
et al 2019, Agostini et al 2021)

The central challenge of agrivoltaics is appor-
tioning sunlight among the crop and the photovol-
taic panels to support adequate crop and electricity
production. To date, the agrivoltaics field has not
systematically evaluated design approaches—largely
because the optimal partition of sunlight depends
on geography and crop selection. Implementations
range from low density, semi-transparent panels at
high coverage levels to vertically oriented, widely
spaced bifacial panels that provide negligible shad-
ing and obtain substantial illumination from reflec-
ted light (Elamri et al 2018, Othman et al 2020,
Ott et al 2020, Riaz et al 2020, Abidin et al
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2021, Agostini et al 2021, Trommsdorff et al 2021).
The diversity of agrivoltaic pilot projects reflects
agricultural diversity, but translating the knowledge
between settings is challenging without understand-
ing the interplay between system components and
the effect of local climate conditions on those inter-
actions. Current models neglect key drivers of plant
function and thereby overlook critical features of
agrivoltaic system interactions.

Agrivoltaic researchers have adopted the concept
of the land equivalence ratio (LER) from intercrop-
ping systems (Mead and Willey 1980, Trommsdorff
et al 2021). This nondimensional metric is equal to
the amount of land required to replicate the agrivol-
taic system’s yield of electricity (in kW-hr yr−1)
and crops (in the metric appropriate for the spe-
cific crop considered) using conventional solar array
and agricultural practices on separate land plots
(equation (1)),

LER=
YieldCrop,AV
YieldCrop,Conv

+
YieldElec, AV
YieldElec, Conv

. (1)

While this metric is succinct, it reduces all per-
formance comparison to land savings. Important
for dryland regions, the LER approach neglects the
impact on water consumption—the primary limit-
ing factor in food production (Jaeger et al 2017).
The addition of a photovoltaic array directly affects
soil evaporation and crop transpiration, collect-
ively known as evapotranspiration (ET), by alter-
ing the radiation environment. Because freshwater
withdrawals already exceed 100% of renewable water
resources in some regions, the impact of agrivoltaics
on water consumption is a crucial metric.

The agrivoltaics field has begun building on exist-
ing modeling frameworks developed for photovolta-
ics (Usama Siddiqui et al 2012, Liu et al 2016, Jain
et al 2017) and agronomy (Valiantzas 2013, Jones
et al 2017) to predict crop and energy production
for integrated systems. To date, these efforts have
fallen into two categories. In one, modelers apply a
light response curve combined with the reduction
in photosynthetically active radiation (PAR) caused
by shading (Campana et al 2021, Trommsdorff et al
2021, Riaz et al 2022), thereby neglecting vital plant
physiology determinants of performance and simply
predicting a decline in crop productivity with increas-
ing array coverage. These simulations predict a dir-
ect tradeoff between food and energy production in
the settings considered but have not explored climate
contributions to agrivoltaic performance. The second
modeling approach uses parameterized crop models
(Amaducci et al 2018, Elamri et al 2018) tying these
models to specific input and location cases. These
more physiologically detailed efforts have considered
a fixed array architecture and emphasized finding
crop partners for agrivoltaics accompanied by exper-
iment. These endpoints of model complexity leave a

gap in ability to evaluate and predict whole system
performance.

Here we evaluate the effects of array design and
crop selection on agrivoltaic energy production, crop
production, and water use in three case study loca-
tions in the southwestern United States. We present
a new intermediate modeling approach that adds a
temperature response to the light response compon-
ent and estimates water use. The goals of the ana-
lysis are to identify array design characteristics that
minimize impacts to crop productivity andmaximize
savings of irrigation water. We anticipate identifying
some system configurations that increase crop pro-
ductivity in tandem with significant water savings in
arid environments. Finally, we combine the analysis
of energy production from the arrays to determine a
trade-off with electricity generation for array designs
that maximize crop productivity or water savings.

2. Methods

2.1. Modeling approach
We approach the question of how an agrivoltaic array
will affect water consumption and plant growth by
determining how the array changes the illumination
conditions in the field and then applying those illu-
mination conditions to (1) a model of ET and (2) a
plant productivity model (figure 1). The same cal-
culation captures the illumination of the photovol-
taic panels and hence the electricity production. The
model is implemented in MATLAB (MathWorks).
For simplicity, the model assumes conditions under
the array are the same as the control setting in all
aspects other than illumination.While multiple stud-
ies have reported differences in air temperature in
the presence of photovoltaic arrays (Barron-Gafford
et al 2019, Broadbent et al 2019, Jiang et al 2021),
the effects are not consistent in magnitude or sign
across or within studies. To examine the sensitiv-
ity of the results to this assumption, we also con-
sidered scenarios where the air temperature under the
array differed from the ambient by up to ±5 ◦C (see
supplemental).

2.2. Array geometry and shading
The first modeling step generates an array geometry
based on the unit panel dimensions, the panel ori-
entation (azimuth and tilt angle) and the panel
height (figure 2(a)). The array unit cell includes the
unit panel (2 m wide and 1.3 m in height, elev-
ated 2.5 m) and variable space, tiled two directions
(figure 2(b)). The analysis considered array rows of
either North-South (NS) or East-West (EW) axes.
We also examined three panel tilt angles, 0, 20 and
30 degrees to the South (for EW rows) or West (for
NS rows). Together, these design permutations span
the density and orientation of most fixed-panel solar
installations and includes average tilt angles for latit-
udes up to approximately 45 degrees.
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Figure 1. Schematic representation of modeling scheme for this study. User-selected inputs of array geometry, time and location
are used to calculate the shade pattern at six minute intervals. The agrivoltaic shading is in turn used to determine electricity and
crop production and water consumption in combination with data on local solar and climate conditions. The model combines
electricity and crop production to determine the land equivalence ratio (LER), which, along with the water consumption, is the
model output.

Figure 2. Schematic view of agrivoltaic array parameters that can be varied within the model. In panel (a), dimension of panel
width,W and height (H); mounting height (Z); and mounting angle (α). As the image shows, the panel may be composed of
multiple photovoltaic devices in one unit, depending on the design. In panel (b), the array parameters: angle of row (β) relative to
ordinal directions, spacing between rows (d1) and spacing between panels within rows (d2). The array unit cell illustrates the
element tiled in two directions to create the full array.

Array coverage (projected area of the panels from
nadir divided by the field area) ranges from 100% to
1% and is the primary basis of comparison between
the designs in the subsequent analysis. To generate
the shade pattern, we first calculated the solar angle
at six-minute intervals for each day of the year at each
location (Blanco-Muriel et al 2001). We determined
the shade fraction by comparing the area of the panel
shadowprojected onto the ground plane to the area of
the array unit cell. Any self-shading by adjacent panels
was corrected in total shading and electricity produc-
tion calculations.

2.3. Modeling of water consumption
We model the array impact on ET using the FAO
formulation of the Penman–Monteith equation
(equation (2)) (Allen et al 1998).

ET=
∆(Rn −G)+ ρacp

es−ea
ra

∆+ γ
(
1+ rs

ra

) . (2)

This model estimates the ET of a plant layer based
on the energy balance between incoming solar radi-
ation (G), outgoing thermal radiation (Rn), and latent
heat from ET, as governed by the local air conditions:
vapor pressure deficit (es–ea), the air density (ρa), spe-
cific heat (cp), psychrometric constant (γ) and slope
of the vapor saturation pressure curve (∆), and bulk
and aerodynamic resistances (rs and ra) that represent
the restrictions to water transport through the soil,
plant tissues and canopy.

For full sun ET estimates, G is the global hori-
zontal irradiance, and for full shade conditions, G is
the diffuse irradiance, both taken from the National
Solar Radiation Database (Sengupta et al 2018). We
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assume that the leaf surface temperature is equal to
the air temperature, the sky temperature is 273 K
and the albedo is 0.7, which together determine
the outgoing radiation (Rn) (Evangelisti et al 2019).
Temperature, ambient water vapor pressure andwind
speed are hourly climate normals for the location,
interpolated for model timesteps (Arguez et al 2012).
The surface roughness/diffusivity parameters of the
PM model, ra and rs, are the baseline values for grass
(Allen et al 1998).

To analyze water savings for each array case, we
weighted the baseline full sun and full shade ET rates
at each timestep by the sun and shade fractions and
calculated an average ET rate for the field as a whole.
This instantaneous ET rate was then integrated over
each day or the total year to quantify seasonal and
cumulative trends.

2.4. Modeling of crop productivity
As in many current ecosystem modeling efforts,
our model avoids distinguishing among plant spe-
cies, but rather collapses plant differences into two
broad types: shade-tolerant plants and sun-tolerant
plants. Productivity in our model refers to photosyn-
thetic activity, which we treat as a proxy for all crop
products. We assume that the plants are managed to
avoid water or nutrient restriction without specify-
ing an irrigationmethod, and ourmodel generates an
instantaneous crop productivity value based on illu-
mination and temperature. We include temperature
in our model, because photosynthesis has a strong
dependence on temperature and because temperat-
ure has diurnal, seasonal and location variations that
interact with the diurnal and seasonal illumination
changes caused by the agrivoltaic array (Farquhar et al
1980, Leuning 2002, Sage and Kubien 2007).

Our plant model calculates productivity as the
product of two responses. First, plant productivity
increases to an asymptotewith irradiance (Pickett and
Myers 1966) (equation (3)):

Light productivity response= tanh

(
1.5 ∗ I

Isat

)
.

(3)

Here I is the cumulative irradiance on the plants
in W m−2 and Isat is the saturation irradiance. We
use the cumulative irradiance rather than the PAR,
because PAR is well-correlated with cumulative irra-
diance at the level of precision required by this model
(Yu et al 2015).

The second component of the plant model is a
temperature response that rises with temperature to a
peak value and then declines. The function is based on
the maximum catalytic rate as a function of leaf tem-
perature, as reported in (Leuning 2002), which cap-
tures the asymmetric rise and fall of activity of the
enzyme Rubisco with temperature (equation (4)):

Temperature productivity response

= C ∗ e

(
Ha/RT0

)(
1−T0/T

)

1+ e
(SvT−Hd)/(RT)

(4)

Ha is the activation energy and Hd the deactiva-
tion energy, R is the gas constant, T0 is a reference
temperature (298 K), T is the leaf temperature, and
Sv is an entropic term. For this model we use the ref-
erenced tabulated values forHa and Sv corresponding
to Brassica rapa, while we adjust the value ofHd to set
the desired peak temperature and C is a scaling con-
stant that adjusts the peak value to one. The full plant
model productivity (equation (5)) is the product of
the light response (LPR) and temperature response
(TPR) for a given set of conditions:

Instantaneous Crop Prod(T, I) = LPR(I) ∗TPR(T) .
(5)

The model output value range lies between zero
and one, where one represents themaximumpossible
instantaneous productivity.

Sun tolerant plants use the same model paramet-
ers for both full sun and full shade conditions, spe-
cifically Isat is 300Wm−2 and the peak response tem-
perature is 26 ◦C. For the shade-tolerant plants, the
model uses the same parameters in the shade, but in
full sun the peak response temperature is 22 ◦C, simu-
lating plants that are more sensitive to high temperat-
ures in full sun. The values for the peak response tem-
peratures and Isat parameters are chosen to match the
aggregate photosynthetic performance of a variety of
plants in agrivoltaic experiments under full sun and
full shade conditions (Barron-Gafford et al n.d.).

We calculate the plant response for each six-
minute time step under full sun and full shade con-
ditions. Agrivoltaic productivity for the field for each
time step is the average of the full sun and full shade
productivity values, weighted by the instantaneous
shade fraction of the field. The instantaneous pro-
ductivity values are integrated over each day and over
a growing season from day 120 to day 275 of the year.
We also include an integration over the whole year
to obtain cumulative values of the crop productivity
potential for settings that may grow crops over mul-
tiple seasons. All productivity values are compared to
an unshaded baseline case.

2.5. Model application
The analysis examines the impact of agrivoltaic
designs on water consumption and crop and electri-
city productivity for an agrivoltaic system in Tucson,
AZ (mean temperature 21 ◦C, mean annual precip-
itation 269 mm) (Arguez et al 2012). The analysis is
further extended to Stockton, CA (mean temperat-
ure 17 ◦C, mean annual precipitation 342 mm) and
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Aurora, CO (mean temperature 11 ◦C, mean annual
precipitation 367 mm) to explore how water con-
sumption, crop productivity and LER depend on sys-
temdesign, location and crop selection. The three loc-
ations span the climatic space for the majority of the
Southwestern United States, a region that has large
agricultural production, arid or semi-arid climate,
and water resources under increasing stress due to
climate change and demand growth (Overpeck and
Udall 2020).

For each location we calculated the shade pattern,
total water consumption and crop productivity for
arrays with both EW and NS orientation, panel cov-
erage ranging from 1% to 100% and tilt angles of 0,
20 and 30 degrees to the South (for EW rows) orWest
(for NS rows). We simultaneously calculated the elec-
tricity production, with panel illumination calculated
as the sum of the direct irradiance projected onto the
panel area and the diffuse irradiance. Electricity pro-
duction of select array configurations at each loca-
tion were compared to projections from the PVWatts
(Dobos 2014) model for validation. Portions of the
panel shaded by adjacent panels are assumed to pro-
duce zero electricity. For all scenarios, we compare the
production of crops and electricity for the agrivoltaic
system to a baseline case consisting of a full sun con-
ventional agriculture field and a second photovoltaic-
only field with a baseline photovoltaic array consist-
ing of EW rows of panels tilted 30 degrees to the south
and 50% area coverage. For both conventional and
agrivoltaic crop productivity we consider a summer
growing season from day 120 to day 275. By com-
paring the agrivoltaic crop and energy productivity to
the baseline, we obtain an LER value for each design
permutation.

3. Results

3.1. Water consumption results
There is a clear correlation between array cover-
age and water savings, due to shading reducing
the incoming irradiation and therefore the ET rate
(figure 3(a)). The NS arrays show a linear trend until
roughly 70% coverage for all tilt orientations. The EW
arrays follow three slightly different linear trends cor-
responding to different panel tilts, with larger tilt val-
ues experiencing larger water savings. At very high
coverage fractions, the linear trend for all array types
shifts to a lower rate of increase with area, due to
increasing self-shading of the array. If the air tem-
perature were warmer under the array, water savings
decrease by roughly 3%per degree of temperature dif-
ference. Conversely, savings increase by 3%per degree
if the air is cooler (see supplemental).

Agrivoltaic arrays with different azimuth orienta-
tion but equivalent coverage both decrease water con-
sumption by a similar amount relative to the full sun

baseline (figure 3(b)). TheNS array has a higherwater
consumption in the winter months, while the EW
array is higher in the early summer, suggesting sea-
sonal variations in the shading pattern for the two
classes of array.

The daily and seasonal trends in shading fraction
for these two arrays (see supplemental) illuminate
these seasonal differences in water consumption. For
south-tilted EW array, the shade fraction is higher in
winter months when the sun’s average zenith angle is
larger, but the shade fraction does not vary over the
course of the day. By contrast, the NS array has a con-
sistent shade fraction over the course of the year, but
the tilt to thewest causes a higher shade fraction in the
afternoon, with most light reaching the ground in the
morning. The shade fraction averaged over the day for
a NS array is independent of the panel tilt angle, only
the distribution of light within the day is affected.

3.2. Crop productivity results
For the sun-tolerant crop (figure 4(a)), productivity
in the shade is lower than productivity in the sun
for the entirety of both days considered. By contrast,
the shade-tolerant model (figure 4(b)) shows lower
in-shade productivity on day 50, but higher in-shade
productivity the majority of day 200. On day 200, the
temperature rapidly rises to a level above the peak
activity temperature for the model in full-sun, and
productivity is suppressed. In the shade, the model
has a higher peak activity temperature and suffers a
less severe mid-day depression in productivity. Over
the course of the year, the shade-tolerant daily plant
productivity in the agrivoltaic setting shows a large
variation, ranging from40%of the control productiv-
ity in the winter to over 110% of the control set-
ting productivity for days in the mid to late sum-
mer. The sun-tolerant plantmodel also exhibits lower
productivity in winter, particularly for EW arrays at
roughly 50%–60% of the control setting, however in
summer the productivity is only 80% of the control
setting value for both EW and NS arrays.

Comparing the performance of both crop mod-
els over the full year (figure 5(a)), as the field cov-
erage fraction increases, plant productivity suffers a
larger penalty relative to the control case. The shade-
tolerant crop model shows a slightly higher crop pro-
ductivity compared to the sun-tolerant model for
arrays with NS rows. For field coverage fractions of
40% or higher, plant productivity varies by roughly
10 to 20 percentage points, depending on the com-
bination of crop and array design.

Reanalysis for the summer growing season alone
(figure 5(b)) shows a large separation in the beha-
vior of the two plant models. The sun tolerant crop
productivity still declines with array coverage, but
the shade-tolerant crop under NS arrays with a west-
ern tilt has a productivity up to 8% higher than the
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Figure 3. In panel (a), the cumulative annual water consumption predicted for agrivoltaic arrays in Tucson, AZ as a percentage of
the full-sun annual evapotranspiration (ET) demand, versus the fraction of the field covered by the arrays in a top-down view. In
panel (b), the daily evapotranspiration rate over the course of the year for agrivoltaic arrays with∼50% coverage in Tucson, AZ.
The North-South (NS) array has panels tilted 20 degrees to the west and the East-West (EW) array has panels tilted 30 degrees to
the south.

Figure 4. In panel (a), the plant productivity over the course of days 50 and 200 for plants in full sun and full shade based on a
sun-tolerant plant model. In panel (b), the plant productivity over those days in full sun and full shade for a shade-tolerant plant
model. In both (b) and (c), solid traces indicate full-sun conditions and dotted traces indicate full shade. The color of the trace
indicates the day of year which supplied the temperature and illumination values for the plant model inputs. In panel (c), the total
daily plant productivity as a percentage of the full sun productivity for both plant models under agrivoltaic arrays with 50%
coverage in Tucson, AZ. The east-west oriented array traces are blue and the north-south traces in red. Solid curves indicate the
sun-tolerant plant model and dotted curves correspond to the shade-tolerant model.

full-sun baseline. This effect comes from the uneven
distribution of shading over the course of the day
for west-tilted NS arrays, which allows the shade-
tolerant crop to take advantage of morning sun while
temperatures are lower. The crop productivity curves
(figure 4(b)) illustrate this behavior in detail. The
shade tolerant crop under EW arrays shows a pro-
ductivity penalty of 10% or less compared to the
baseline, but it receives no net benefit from the
shading.

The water consumption over the summer grow-
ing season (day 120–day 275) versus the field cover-
age fraction (figure 5(c)) is almost identical to the
full-year trend (figure 3(a)). For both NS and EW
arrays, water consumption declines by roughly 45%
of the array coverage fraction. This indicates that for
NS arrays with 40% or higher coverage, the agrivol-
taic field would have 20%–45%water savings over the

full-sun control depending on the coverage level, with
productivity enhanced above the baseline for shade-
tolerant crops (figure 5(b)).

3.3. Location comparison
For Tucson (figure 6(a)) the shade-tolerant crop
model productivity andwater saving trade-off is small
to positive. However, for the sun-tolerant model, the
water savings are close to the loss in crop perform-
ance regardless of design. In the results for Stockton
(figure 6(b)) the shade-tolerant model performs well
but does not show productivity benefits. Tilted NS
arrays lose less than 5% relative to the baseline. This
performance difference compared to Tucson is due to
the cooler temperatures in Stockton, which also result
in lower water savings. For Aurora, CO (figure 6(c)),
the behavior of both crop models and both array ori-
entations collapse into a single behavior trend. Based
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Figure 5. In panel (a), the cumulative annual plant productivity as a percentage of productivity in full sun for plants grown under
agrivoltaic arrays relative to the coverage fraction of the array. In panel (b), the plant penalty vs the coverage fraction over the
summer growing season (day 120 to day 275). In both panels, east-west array points are shaded blue, while north-south points are
shaded red. Filled markers indicate the sun-tolerant plant model, while open markers indicate the shade-tolerant plant model.
The dashed line at y = 100% is included to guide the eye. In panel (c), the water consumption over the summer growing season,
as a percentage of the full sun water consumption, versus the field coverage. Again, East-West array points are drawn as blue
circles and north-south points as red triangles and these relationships reflect Tucson, AZ.

on these simulations, an agrivoltaic system in Aurora
would suffer a plant productivity penalty of roughly
two thirds of thewater savings over the summer grow-
ing season regardless of the coverage level when com-
pared to a full-sun field. The water savings are low-
est for this location among the three, at roughly 1/3
of the coverage level. The effect of warmer or cooler
temperatures under the array also depends on loc-
ation, crop type and season considered. In Tucson
warmer temperatures reduce summer shade tolerant
crop productivity to a level comparable to that in
Stockton, while crops benefit from warmer temper-
atures in Aurora (see supplemental).

3.4. Land equivalent ratio analysis
All agrivoltaic scenarios considered had LER values
greater than one, indicating that even low-coverage
designs increase the land use efficiency. While LER
increases with area coverage, there is a large degree
of variation in the LER at comparable coverage levels
(figure 7(a)). At coverage of 60% and higher, the
choice of array orientation and tilt and the shade tol-
erant vs sun tolerant crop can change the LER value by

up to 0.6. In all cases, the range of potential LER val-
ues increases with the coverage, however the Aurora
location LER values are much more closely bounded
for a given coverage level. As the narrow green region
indicates, this is due to the Aurora location having
productivity independent of crop type (figure 7(c)).

4. Discussion

Growing land-use conflicts between food and energy
production have increased interest in agrivoltaics as
a dual-use approach that could benefit both sectors.
The design challenge of managing the tradeoffs asso-
ciated with overstory PV panel light capture versus
light transmission to food production has become
a barrier to wider-scale adoption. Our modeling
approach illustrates that agrivoltaics have potentially
large benefits across the food, energy, and water sec-
tors within drylands, such as the Southwestern US,
but the benefits vary depending on the design of the
agrivoltaic system. All locations examined showed a
reduction in water consumption proportional to the
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Figure 6. Plant productivity vs water consumption over the summer growing season (day 120 to day 275) for both shade-tolerant
and sun-tolerant plant models at three locations. In panel (a), Tucson, AZ. In panel (b), Stockton, CA. In panel (c), Aurora, CO.
In all panels, blue points correspond to East-West arrays, red to North-south, while filled markers indicate the sun-tolerant plant
model and open markers indicate the shade-tolerant model. The dashed line at y= 100% in panel (a) is included to guide the eyes.

array coverage level. This would represent a direct
savings of irrigation inputs in a regionwithmore than
8 million irrigated acres (Cody and Johnson 2015,
Lahmers and Eden 2018) where the future water sup-
ply is projected to decline by 10%–20% on average
(Pathak et al 2018, Sheikh and Stern 2019, Ray et al
2020, Miller et al 2021). We also illustrated multiple
combinations of crop and array designminimally det-
rimental or even beneficial to crop productivity—
even with array coverage exceeding 50%. These res-
ults indicate that tradeoffs between energy produc-
tion and crop productivity are sensitive to local con-
ditions. At the hottest, driest location, array design
and crop selection combine to have large impacts on
crop productivity. By contrast, at the coolest, wet-
test location, crop productivity varied only a small
amount with crop type and array design. Finally, all
locations showed the potential to have LER values of
2 or higher. PV developers have long been able to util-
ize a range of tools, such as the SystemAdvisorModel,
to anticipate electricity production within traditional
PV systems (Blair et al 2018). This model provides
a similar tool for predicting plant productivity in an
agrivoltaic system, allowing stakeholders to quantify

trade-offs to coupled food, energy, and water systems
in their climate setting.

This new model identifies the role of array design
in mediating the impact of the agrivoltaic array on
crop productivity. Prior simulations of agrivoltaics
that did not account for diurnal temperature vari-
ations have predicted that crop productivity would
decline with array coverage (Dupraz et al 2011, Riaz
et al 2020, Trommsdorff et al 2021), in contrast to
experimental results (Barron-Gafford et al 2019). By
including effects of temperature, the model can sim-
ulate crop productivity increases with coverage for
specific array designs that create an uneven distribu-
tion of shading over the course of the day, with shad-
ing coinciding with high temperatures. This design
approach results in shade-tolerant crop productiv-
ity up to 8% higher over the summer growing sea-
son than arrays with comparable coverage where the
shade fraction does not vary over the course of the day
and suggests that tracking arrays (ITRPV 2022) may
further allow tailoring of the shade profile for max-
imum plant growth.

The second important insight from the model
is the significance of crop selection. At the Tucson

8
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Figure 7. In panel (a) the land equivalence ration (LER) vs
area coverage for agrivoltaic arrays in Tucson, AZ including
crop productivity over the summer growing season (day
120–day 275). In panels (b)–(d), the upper and lower
bounds of LER vs area coverage for agrivoltaic systems in
Tucson, AZ, Stockton, CA, and Aurora, CO. Portions of the
plot shaded in green represent the amount of variation in
LER controlled by crop selection. Portions shaded in gray
represent the LER variation controlled by array design. The
heavy black curve in the central region is the LER trend for
arrays with sun-tolerant crops and EW arrays at 50%
coverage and a 30 degree southern tilt, the baseline
configuration.

and Stockton locations, agrivoltaic shading is either
minimally detrimental or positive for shade-tolerant
plants. By contrast, sun-tolerant crops in this model
respond to any shading with a loss of productiv-
ity proportional to the coverage level. The need
to pair solar arrays with crop partners that toler-
ate shading has been well established (Dupraz et al
2011, Trommsdorff et al 2021, Riaz et al 2022),

however this model gives insight into particular
plant physiological characteristics that will perform
well in agrivoltaic settings. Plants that are sensit-
ive to high heat under high illumination condi-
tions may benefit from agrivoltaic shading, partic-
ularly at hot locations. Our results are consistent
with crop-specific models such as GECROS, which
have predicted that agrivoltaics can increase unirrig-
ated crop yields relative to full-sun controls in years
with low precipitation (Amaducci et al 2018). Future
research could modify these model functions with
field-derived data on plant performance from spe-
cific crop types and any degree to which these crops
can adapt to a shade. Photosynthetic acclimation—
whereby leaves alter their morphology and/or bio-
chemistry to adapt photosynthetic efficiency subject
to long-term changes in the light environment—is
well documented (Townsend et al 2018); however,
no studies on plant acclimation within agrivoltaics
exist to-date. Photosynthetic acclimation of crops in
an agrivoltaics setting would likely increase the cal-
culated benefits of agrivoltaics, and this represents a
potentially valuable subfield of study.

The third fundamental characteristic considered
in this study, geography, also governs the trade-offs
between crop and energy in agrivoltaic systems.While
all three locations saw a reduction in water con-
sumption, the two hottest, driest locations showed
a bifurcation in performance between shade and
sun-tolerant crop types. At cooler, wetter Aurora,
CO the model predicts no beneficial shading effects.
Intriguingly, recent results from a nearby site showed
that grasses growing beneath a photovoltaic array
exhibited higher growth in regions receivingmorning
sun and afternoon shade despite having lower aver-
age soil moisture content than regions with morning
shade and afternoon sun (Sturchio et al 2023). These
experimental results suggest that (1) plants may accli-
matize to agrivoltaic shading or (2) that the bene-
fits of afternoon agrivoltaic shading may be more
pronounced when crops experience water restriction.
Both possibilities may be valid simultaneously.

The sensitivity of both water savings and crop
productivity to the air temperature under the array
(see supplemental) signals a need for more detailed
modeling capturing the impact of the array on the
local microclimate. Existing observations of array
temperature impacts have focused on unirrigated
dryland settings and a narrow range of array designs.
A model that accounts for array design and density
and predicts temperature effects on diurnal and sea-
sonal time scales will be valuable for predicting array
impacts on crop productivity.

The array, crop, and geographic drivers all affect
LER. At all locations, the highest LER values at every
coverage level were those that maximized electricity
production rather than crop productivity. The west-
tilted NS arrays that maximize crop production suffer
a larger reduction in electricity production (∼10%)
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than the increase in crop productivity (at most 8%)
relative to the comparable coverage EW array with a
30% tilt to the south.Within that context, the agrivol-
taic system designer is presented with a trade-off:
maximize crop production through afternoon shad-
ing at the expense of total electricity production.
Similarly, a farmer seeking to reduce the irrigation
demand of a shade-tolerant crop may choose to part-
ner with an agrivoltaic array, thereby increasing the
total system productivity with little or no crop pro-
ductivity loss.

The results of this analysis suggest several avenues
for further investigation to improve the fidelity and
scope of subsequent cropmodels. Extending the plant
model in this analysis to include performance under
water stress would allow extension to settings depend-
ent entirely on precipitation. Experiments aimed at
identifying within-crop variability in traits linked
with responses to environmental variability would
facilitate tailored crop selection.

5. Conclusion

This analysis shows that integrated agrivoltaic sys-
tems have potential to benefit coupled energy, food
andwater systems by reducing land costs of photovol-
taic production while maintaining agricultural pro-
duction with lower water use. While the photovoltaic
array can have a negative impact on crop productiv-
ity, all agrivoltaic systems considered had higher land
use efficiency LER than equivalent conventional sys-
tems and reducedwater consumption proportional to
the coverage level. Agrivoltaic systems with roughly
50% coverage will reduce crop water consumption
by 15%–20% or more depending on the location.
Ultimately location, crop selection and array design
combine to determine the agrivoltaics optimization
landscape (Macknick et al 2022), and these results
demonstrate the value of a modeling approach that
captures agrivoltaic sensitivity to geography, crops,
and array design.

This model allows system designers to quantify
crop and energy tradeoffs for individual systems.
For a given location and coverage the variation in
LER depended on array design and crop selection
choices. A system combining photovoltaics with a
sun-tolerant crop or a system located in a climate sim-
ilar to Aurora, CO, will face a direct tradeoff between
energy production and crop productivity. If there is
some maximum acceptable reduction in crop pro-
ductivity for the farmer, that threshold will determ-
ine the maximum array density tolerable and con-
sequently the maximum LER achievable by those sys-
tems. By contrast, in hot, dry locations with a shade-
tolerant crop, productivitymay in some cases increase
with array coverage, thereby achieving a high LER
with high density arrays. Maximizing crop produc-
tion requires an array design that provides predom-
inantly afternoon shading over a shade tolerant crop.

This array orientation reduces electricity production
10%, but crop production remains high under very
high coverage levels. In meeting the land needs for
photovoltaic energy generation and ongoing invest-
ments in agriculture, agrivoltaics may provide bene-
fits whose performance reflects geographically vari-
ability, array design choices, and crop performance.
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