Entries by Anna Adair

Microclimate under agrivoltaic systems: Is crop growth rate affected in partial shade of solar panels?

Researchers in this study monitored soil and air temperature, humidity, wind speed, and incident radiations at a full sun site, as well as at two agrivoltaic systems with different densities of photovoltaic panels. They recorded the findings during three seasons (winter, spring, and summer) with both short cycle crops (lettuce and cucumber) and a long cycle crop (durum wheat). The researchers concluded that little adaptations in cropping practices should be required to switch from an open cropping to an agrivoltaic cropping system and attention should mostly be focused on mitigating light reduction and on selection of plants with a maximal radiation use efficiency in these conditions of fluctuating shade.

Simulated solar panels create altered microhabitats in desert landforms

Researchers in this study used experimental panels to simulate the effects of solar development on microhabitats and annual plant communities present on gravelly bajada and caliche pan habitat, two common habitat types in California’s Mojave Desert. They evaluated soils and microclimatic conditions and measured community response under panels and in the open for seven years. The study’s results demonstrate that the ecological consequences of solar development can vary over space and time and suggest that a nuanced approach will be needed to predict impacts across desert landforms differing in physical characteristics.

Case Study: Far Niente Winery

At Far Niente Winery, respecting the land and all it provides is just second nature. Since 1979, their winemakers have been coaxing award-winning wines out of the grapes grown on their Napa Valley estate, but in 2005 began embracing their role as environmental stewards through their sustainability practices related to farming, winemaking, and renewable energy […]

The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

This research addresses the concern that photovoltaic systems create a “heat island” effect. Researchers examined the heat island effect with experiments spanning three biomes and found that temperatures over a photovoltaic plant are regularly 3–4°C warmer than wildlands at night, a direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures.


Technical Guidance for Utility-Scale Solar Installation and Development on Agricultural, Forested, and Natural Lands

The Maine Department of Agriculture, Conservation, and Forestry presents this technical guide regarding the siting of utility-scale solar projects with consideration for valuable agricultural land, forest resources, and rare or unique natural areas. The guide is intended to provide practical information for those considering solar development on their property, as well as planning important preconstruction, construction, and post-construction/decommissioning activities.

Agrivoltaics: Modeling the relative importance of longwave radiation from solar panel

This article posits that in order to optimize agrivoltaic systems for crop growth, energy pathways must be characterized. While solar panels shade crops, they also emit longwave radiation and partially block the ground from downwelling longwave radiation. The authors suggest that a deeper understanding of the spatial variation in incoming energy would enable controlled allocation of energy in the design of agrivoltaic systems. This paper also presents a model to quantify the downwelling longwave energy at the ground surface in an agrivoltaic array and demonstrates that longwave energy should not be neglected when considering a full energy balance on the soil under solar panels.


Spatial Distribution Model of Solar Radiation for Agrivoltaic Land Use in Fixed PV Plants

When installing photovoltaic panels on agricultural land, one of the most important aspects to consider are the effects of the shadows of the panels on the ground. This study presents a valid methodology to estimate the distribution of solar irradiance in agrivoltaic installations as a function of the photovoltaic installation geometry and the levels of diffuse and direct solar irradiance incident on the crop land.

The Impacts of Agrivoltaics on Crop Production

This PhD dissertation addresses four primary questions: 1.) To what extent is plant-available radiation reduced by solar panels of a photovoltaic system? 2.) How does this effect parameters of aerial and soil climate? 3.) How do the cultivated crops respond to the altered cropping conditions with regard to plant growth and development? 4.) What consequences does this have regarding the yields and the chemical composition of the investigated crop-species? A field experiment in which grass clover, potatoes, celery, and winter wheat were planted under a photovoltaic facility in Southwest Germany was conducted to answer these questions.