PV Design and Racking System Options

Agrisolar Clearinghouse Icon

Agrivoltaic Engineering and Layout Optimization Approaches
in the Transition to Renewable Energy Technologies: A Review

This resource shows that agrivoltaics have the potential to benefit both crop yield and photovoltaic efficiencies. Innovative engineering technologies related to photovoltaic tracking along with new generation photovoltaic cells were reviewed to determine the factors that influence optimization in agrivoltaic systems. The review also investigates the last five years of research in agrivoltaic optimization and implications of future AV developments.
Agrisolar Clearinghouse Icon

Open-Source Design and Economics of Manual Variable-Tilt Angle DIY Wood-Based Solar Photovoltaic Racking System

Fixed-tilt mechanical racking, consisting of proprietary aluminum extrusions, can dominate the capital costs of small-scale solar photovoltaic (PV) systems. Recent design research has shown that wood-racking can decrease the capital costs of small systems by more than 75% in North America. To determine if wood racking provides enough savings to enable labor to be exchanged profitably for higher solar electric output, this article develops a novel variable tilt angle open-source wood-based do-it-yourself (DIY) PV rack that can be built and adjusted at exceptionally low costs. A detailed levelized cost of electricity (LCOE) production analysis is performed after the optimal monthly tilt angles are determined for a range of latitudes. The results show the racking systems with an optimal variable seasonal tilt angle have the best lifetime energy production, with 5.2% more energy generated compared to the fixed-tilt system. Both fixed and variable wooden racking systems show similar LCOE, which is only 29% of the LCOE of commercial metal racking.
Agrisolar Clearinghouse Icon

Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications

This report discusses the main principles of different tuning approaches in customizable photovoltaic designs and provides an overview of relevant concepts of tunable SC technologies. The report provides a systematic analysis addressing photovoltaic materials, electrode layers, optical structures, substrates and encapsulates. Also included is a summary of integrations of cutting-edge tunable PV adapted to versatile applications, current challenges, and insightful perspectives into potential future opportunities for tunable PV systems.
Agrisolar Clearinghouse Icon

Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use

This research presents a highly transparent concentrator photovoltaic system with solar spectral splitting for dual land use applications. The system includes a freeform lens array and a planar waveguide. Sunlight is first concentrated by the lens array and then reaches a flat waveguide. The dichroic mirror with coated prisms is located at each focused area at the bottom of a planar waveguide to split the sunlight spectrum into two spectral bands. The red and blue light, in which photosynthesis occurs at its maximum, passes through the dichroic mirror and is used for agriculture. The remaining spectrums are reflected at the dichroic mirror with coated prisms and collected by the long solar cell attached at one end of the planar waveguide by total internal reflection. Meanwhile, most of the diffused sunlight is transmitted through the system to the ground for agriculture. The system was designed using the commercial optic simulation software LightTools™ (Synopsys Inc., Mountain View, CA, USA). The results show that the proposed system with 200× concentration can achieve optical efficiency above 82.1% for the transmission of blue and red light, 94.5% for diffused sunlight, which is used for agricultural, and 81.5% optical efficiency for planar waveguides used for power generation. This system is suitable for both high Direct Normal Irradiance (DNI) and low DNI areas to provide light for agriculture and electricity generation at the same time on the same land with high efficiency.
Agrisolar Clearinghouse Icon

Technoeconomic Model Suggests Scaling-Up Perovskite Quantum Dots for Optoelectronics Warrants Improved Synthesis Yield, Solvent Recycling, and Automation

Colloidal quantum dots (QDs) are nanometer-sized semiconductor crystals grown via low-cost solution processing routes for a wide array of applications encompassing photovoltaics, light-emitting diodes (LEDs), electronics, photodetectors, photocatalysis, lasers, drug delivery, and agriculture. A comprehensive technoeconomic cost analysis of perovskite quantum dot optoelectronics is reported. Using economies-of-scale considerations based on price data from prominent materials suppliers, we have highlighted that increased QD synthesis yield, solvent recycling, and synthesis automation are critical to market adoption of this technology and driving quantum dot film fabrication costs down.