Entries by Victorian Tilley

, ,

ATTRA Grazing Planning Manual and Workbook

This manual provides all the resources you need to write your own grazing plan, monitor its efficacy, and adjust your management throughout the grazing season. The manual will also assist in reviewing plans and records, assessing goal achievements and deficiencies, and suggestions on improving for the next season. Also included in this workbook is a step-by-step process for writing an effective grazing plan. The guide provides resources to assist producers with planning, charting and recording grazing throughout the season.

, ,

Evaluation of Solar Photovoltaic Systems to Shade Cows in a Pasture-Based Dairy Herd

The objective of this study was to determine the effects on grazing cattle under shade from a solar photovoltaic system. Included in the study were weather data as well as biological and behavioral measurements of the cattle. These measurements included fly avoidance and behaviors, fly counts, respiration rates, drinking activity and bouts, eating behavior, rumination and lying time. The study also collected data on use of shade by the cattle and their body temperature(s). The results of this study show that agrivoltaics may provide an acceptable method of heat abatement to pastured dairy cows, among other benefits.

, ,

Electrical Consumption on Midwestern Dairy Farms in the United States and Agrivoltaics to Shade Cows in a Pasture-Based Dairy System

The objectives of the thesis were to investigate electrical energy use on dairy farms located in west central Minnesota and to evaluate the effects of shade use by cattle from solar photovoltaic systems. This study concluded that agrivoltaics is one method that producers could use to achieve multiple benefits, including but not limited to: increasing land-use efficiency, reducing grid-tied and fossil fuel-produced electricity use, and increasing consumer acceptance all while providing heat abatement to cattle which has the potential to increase milk production, health, and welfare of dairy cows.

, ,

Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming

This study presents a conceptual design for a novel agrivoltaic system based on pasture-fed rabbit farming and provides the technical, environmental, and economic analyses to demonstrate the viability of the concept. The analysis includes methods of grazing rabbits, including grazing density, PV maintenance and operations of rabbit-grazed land and pasture-fed rabbit operation components. The study also includes a conceptual design for rabbit-based agrisolar operations.

, ,

Mount Morris Agrivoltaics Study: Co-locating Solar and Agriculture at the Morris Ridge Solar Energy Center

The Town of Mount Morris commissioned this research to answer questions about the nascent solar-agricultural industry, assess opportunities to attract farmers to the EDF Renewables Morris Ridge Solar Energy Center, and identify viable markets for solar-raised products. The report addresses the current interest of local farmers in grazing sheep and establishing apiaries at Morris Ridge. The study specifically addresses solar grazing concerns, including: budget assumptions, purchase and sale of lambs for grazing, operating expenses, estimated returns and revenues and expenses.

,

Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

This report reveals that increasing the sustainability of food production will require development of new mixed-use technologies. Also discussed is that novel electricity-generating windows (Wavelength-Selective Photovoltaic Systems, WSPVs) are suitable for use in greenhouses for growing plants. Results show minimal lasting effects of growth under WSPVs on plant physiology and development, thus WSPVs represent a new wedge for decarbonizing the food system.

, ,

Solar Power Europe Agrisolar Best Practices Guidelines

This AgriSolar Best Practices Guide is intended to assist farmers, PV developers, regulators, and other stakeholders in developing high quality Agrisolar projects. The guide provides Best Practices for Agri-PV systems, PV on agricultural buildings, and open-field applications. Also included in this guide are discussions of trends and innovations in the AgriSolar community. This guide defines the key actions required of all parties involved in project development to maximize the sustainability of Agrisolar projects, from an agronomical, ecological, and financial perspective.

,

Solar Radiation Distribution Inside a Greenhouse with South-oriented Photovoltaic Roofs and Effects on Crop Productivity

This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The distribution of the solar radiation observed in this study is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude for both energy and crop production. The study also includes suggestions for a better agronomic sustainability of agrivoltaic systems.

,

Solar Radiation Distribution Inside a Monospan Greenhouse with the Roof Entirely Covered by Photovoltaic Panels

The long-term analysis in this study demonstrated a good capability of the numerical model to predict the shading effect inside a photovoltaic greenhouse combining the daily calculated exposed percentage with measurements of solar radiation. Photon flux daily values inside a PV greenhouse were calculated and measured from April 18th to June 8th in 2014. Commercial software was used to calculate the exposed percentage values for the greenhouse being studied. This study shows that modern software can be utilized in optimizing PV greenhouse operations.

,

Semi-Transparent Organic Photovoltaics Applied as Greenhouse Shade for Spring and Summer Tomato Production in Arid Climate

Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.