This fact sheet includes information on how current and future research can help us understand the role of pollinator-friendly solar in biodiversity conservation. Without a doubt, considerable amounts of land will be needed to meet future solar energy projections. The current rate of solar energy development has already increased the pressure on land resources for energy generation and other land uses (e.g., agriculture, habitat for biodiversity, etc.). Therefore, sustained development of solar energy will depend on proper siting to avoid ecological conflicts and land-sharing solutions that synergize this form of renewable energy development with other land uses.

This study focused on the photosynthetic photon flux density and employed an all-climate solar spectrum model to calculate the photosynthetic photon flux density accurately on farmland partially shaded by solar panels and supporting tubes. This study also described an algorithm for estimating the photosynthetic photon flux density values under solar panels.

This research argues that non-negligeable amounts of water can be saved due to the windbreak effect caused by vertical agrivoltaic systems.

This work contributes to agrivoltaic design methodology through a digital replica and genomic optimization framework which simulates light rays in a procedurally generated agrivoltaic system at an hourly timestep for a defined crop, location and growing season to model light absorption by the photovoltaic panels and the chosen tomato crop.

This article provides a bibliometric analysis of agrivoltaic topics based on 121 publications indexed in SCOPUS, in which either economic assessments of agrivoltaics, agrivoltaic systems for crops and livestock animals, photovoltaic greenhouse and agrivoltaics with open field are discussed, or its ideas are used to analyze certain locations.

Written for the AgriSolar Clearinghouse by Center for Rural Affairs

In this study, a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10–20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated organic photovoltaic systems.

In this article, researchers evaluated seasonal patterns of soil moisture (SM) and diurnal variation in incident sunlight (photosynthetic photon flux density [PPFD]) in a single-axis-tracking agrivoltaic system established in a formerly managed semiarid C3 grassland in Colorado. Their goals were to (1) quantify dynamic patterns of PPFD and SM within a 1.2 MW photovoltaic array in a perennial grassland, and (2) determine how aboveground net primary production (ANPP) and photosynthetic parameters responded to the resource patterns created by the photovoltaic array. Investigators found relatively weak relationships between SM and ANPP despite significant spatial variability in both. Further, there was little evidence that light-saturated photosynthesis and quantum yield of CO2 assimilation differed for plants growing directly beneath (lowest PPFD) versus between (highest PPFD) PV panels. Overall, the AV system established in this semiarid managed grassland did not alter patterns of ANPP in ways predictable from past studies of controls of ANPP in open grasslands.

This study explores how a matching model can be utilized for empirically planning renewable energy siting using an illustrative case study in Japan. The matching algorithm enables the matching of sites and renewable energy specifications, reflecting the true preferences of local people regarding facility siting.

In this article, researchers in Korea analyze the profitability of agrivoltaics and its implications for rural sustainability. The profitability of agrivoltaics is verified in all studied regions, and the order of profitability and productivity by region are opposite to each other. Researchers suggest that regions with lower productivity may have a higher preference for installing agrivoltaics, implying the installation of agrivoltaics provides a new incentive to continue farming even in regions with low agricultural productivity.