This paper focuses on integrating agrivoltaics systems within super-intensive olive groves in the Mediterranean region. A dual model is used to calculate the suitable transparency of PV modules, representing the area not occupied by PV cells.

This study aims to discover how lettuce and potato crops are impacted by the shade of photovoltaic (PV) panels. Four scenarios are considered, with varying parameters such as latitude, azimuth, slope, and row distance between PV modules. The results reveal a significant potential for growing potatoes under PV modules. However, lettuce faces difficulties due to its high requirement for solar intensity (PAR), making it less adaptable to shade. The findings of this study indicate that crops like potatoes, which have a lower requirement for PAR, can be successfully cultivated in conjunction with PV systems.

This article presents a comparison of changes in vine growth and fruit characteristics due to the installation of solar panels in the vineyard. Researchers found that the development of vines and fruits was not significantly different, and that the post-harvest fruit showed no difference in granules, fruit discharge, sugar content, or pericarp color.

This study addresses the interplay between radiation transmission, crop development and irrigation needs of corn cropping in field conditions, by the description of crop development dynamics, distinguishing between fixed and dynamic panels. Researchers showed that maize crop responded to both independent and combined stresses (shade and water deficit), with a significant decrease in leaf area index, total dry matter and grain yield. Concerning water use, we showed the potential of AV to reduce irrigation inputs (by up to 19–47% compared to unshaded plots) via reduced soil water depletion and reference evapotranspiration.

In this study, a Consequential Life‐Cycle Assessment (CLCA) was conducted to holistically assess the environmental consequences arising from a shift from single‐use agriculture to agrivoltaic systems (AVS) in Germany. The results of the study show that the environmental consequences of the installation of overhead AVS on agricultural land are positive and reduce the impacts in 15 of the 16 analyzed impact categories.

This two-year study aimed to analyze whether intermittent shading produced by panels placed over grapevines can delay grape ripening to counter the impact of global warning on phenology. Researchers concluded that intermittent shading produced by panels can shift ripening into a cooler period compared to unshaded plants. They also state that shading intensity and duration should be adapted to evaporative and soil water conditions to benefit from the phenological delay caused by panels, without altering production in the long term.

Researchers analyzed and compared the costs for an agrivoltaic system with the cost of plastic covers for blueberry crops in Chile. They also introduce a metric to calculate the price for covering cropland with an agrivoltaic system.

This paper applied an open-source spatial-based model to quantify the solar power generation (the ground-mounted photovoltaic panels) for the southern regions of Poland and Ukraine. Researchers then compared economic indicators of the solar power generation and the crop production projects for rain-fed land. The analysis revealed that the PV projects have higher net present value, but lower profitability index compared to the crop production.

This PhD dissertation addresses four primary questions: 1.) To what extent is plant-available radiation reduced by solar panels of a photovoltaic system? 2.) How does this effect parameters of aerial and soil climate? 3.) How do the cultivated crops respond to the altered cropping conditions with regard to plant growth and development? 4.) What consequences does this have regarding the yields and the chemical composition of the investigated crop-species? A field experiment in which grass clover, potatoes, celery, and winter wheat were planted under a photovoltaic facility in Southwest Germany was conducted to answer these questions.

This study evaluates green bean cultivation inside greenhouses with photovoltaic (PV) panels on the roof. Researchers found that the beans adapted to the change in shading by relocating more resources to the stems and leaves. As a result, average yield decreased compared to that of a conventional greenhouse. However, an economic trade-off between energy and crop yield can be achieved with a panel coverage of 10%. The research also provides an experimental framework that could be replicated and used as a decision support tool to identify other crops suitable for solar greenhouse cultivation.