By Carl Berntsen, NCAT Energy Engineer
May 2023

This guide serves as an introduction to the solar industry, relative to agrisolar development in the United States, community programs, and solar ownership or lease opportunities for homes, farms, and ranches. It covers ownership options for small-scale, single-user solar installations, community solar installations that distribute power throughout a community, and utility-scale installations that sell power to the utility, as well as common utility-scale land-lease components for landowners looking to allow a developer to construct and operate a solar installation on a portion of their land. Finally, using nationwide average statistics on production and cost, the guide offers a financial snapshot of a utility-scale solar installation.

This guide serves to help landowners navigate the complex and challenging decision process of whether to enter a solar lease. It presents key issues to consider and information to gather prior to making a decision, offers communication skills to help guide conversations with others connected to the land, and provides tips and tools for negotiating with the solar company on the terms of a solar lease.

This publication from the University of Missouri Extension uses information developed by land grant universities, in states where solar energy development is more common, to inform landowners that are considering utility-scale solar energy development land leases.

This law bulletin from Ohio State University provides a number of things to do, issues to consider, people to consult, and questions to ask before and after signing a solar lease.

This guide presents considerations for landowners looking at leasing their land for solar development.

This research looks at the decision factors informing private landowners’ decisions to host solar sites on their land through a case study in California. Applying land system science and agricultural decision-making theory, we find that landowner decisions to host utility scale solar sites are based on profit-maximization, water availability, visual and ecological landscape values, and agricultural land preservation ethic.

This guide aims to help farmland owners understand solar energy development and the solar energy leasing process. While the guide includes specific information for Ohio, much of the information in the guide is relevant for farmland owners in any state. Authors present initial considerations for farmers, as well as an explanation of common legal documents and terms in solar leasing. The final chapter of the guide organizes solar leasing issues into a checklist tool that reviews questions to ask and actions to take when thinking about solar energy development on the farm.

This article details Louisiana’s current solar decommissioning regulations and makes suggestions for how to improve the state’s approach to decommissioning solar installations.

When solar projects reach the end of their expected performance period, there are several management options. They include extending the performance period through reuse, refurbishment, or repowering of the facility or fully discontinuing operations and decommissioning the project. In this resource guide, the Center for Rural Affairs briefly expands upon these options as well as potential decommissioning plans, followed by suggestions for county governments once the decision to decommission a project has been made.

The world’s total annual electrical and electronic waste (e-waste) reached a record of 41.8 million metric tonnes in 2014. Annual global PV panel waste was 1,000 times less in the same year. Yet by 2050, the PV panel waste added annually could exceed 10% of the record global e-waste added in 2014. As the analysis contained in this report shows, the challenges and experiences with e-waste management can be turned into opportunities for PV panel waste management in the future. As the global PV market increases, so will the volume of decommissioned PV panels. At the end of 2016, cumulative global PV waste streams are expected to have reached 43,500-250,000 metric tonnes. This is 0.1%-0.6% of the cumulative mass of all installed panels (4 million metric tonnes). Meanwhile, PV waste streams are bound to only increase further. Given an average panel lifetime of 30 years, large amounts of annual waste are anticipated by the early 2030s. These are equivalent to 4% of installed PV panels in that year, with waste amounts by the 2050s (5.5-6 million tonnes) almost matching the mass contained in new installations (6.7 million tonnes). Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. These include recovery of raw material and the emergence of new solar PV end-of-life industries. Sectors like PV recycling will be essential in the world’s transition to a sustainable, economically viable and increasingly renewables-based energy future. To unlock the benefits of such industries, the institutional groundwork must be laid in time to meet the expected surge in panel waste.