This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. Topics in focus in this study include experimental grazing management, herbage mass, land equivalent ratio and net return of spring grazing. These topics are useful when considering approaches to developing and managing agrisolar operations that include grazing.

This paper examines the current scope of sheep grazing in New York State and the benefits, opportunities, challenges, and barriers to scaling up the sheep industry to graze ground-mounted photovoltaic arrays for vegetation management. The study shows that there are similarities between USSE facilities and those of Distributed Solar Energy’s benefits, opportunities and challenges but that they are modified due to the larger scale of operations of the projects.

This report explores the synergies between farming and solar photovoltaics with the premises that agricultural production on farmland should be maintained and farm profitability and soil health should be improved. The report states that siting solar facilities in Maryland is a major stumbling block to the progress of in-state solar energy generation and finding common ground and possible solutions to issues allows the state to proceed forward in developing agrisolar operations.

This publication discusses the principles and practices of grazing multiple species of livestock on pastures. Here, you’ll find a discourse on the benefits of multispecies grazing on productivity and profitability, including its positive impacts on pasture diversity and health. Also covered are grazing dynamics (how diverse animal species use grazing resources), the types and kinds of fencing and working facilities needed by various animals, and how to deal with predators, mineral supplementation and parasites. These considerations and topics can be useful when developing agrisolar operations that include livestock.

The goal of this study is to assess the environmental impacts of a novel pasture-based agrivoltaic concept: co-farming rabbits and solar PV. Details of the study include a focus on modeled scenarios of emissions use related to rabbit production on agrisolar land. Also included are scenarios on independent solar PV and conventional rabbit production systems and rabbit agrivoltaic systems.

This study was conducted to compare lamb growth and pasture production under solar panels and in open pastures in Corvallis, Oregon in spring 2019 and 2020. Results of the study dynamics of variations of shaded areas for rabbit habitat, seasonal herbage and forage production. These results can be useful in developing agrisolar operations that include rabbits.

This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. The discussion dives into a variety of topics, including: reduction of pasture production due to trampling, production in fully shaded areas, herbage variation and its effect on lamb production and lamb behavior relating to water intake and shade usage. These considerations could be helpful for agrisolar development when lambs will be used for grazing, etc.

The study includes information that may be useful in developing agrisolar operations that include grazing sheep, such as: solar-grazing compensation(s), purchasing of lambs, operating expenses and fixed-cost investments. The research aims to answer questions about the nascent solar-agricultural industry, assess opportunities to attract farmers to the EDF Renewables Morris Ridge Solar Energy Center, and identify viable markets for solar-raised products.