Sheep grazing under solar panels in Australia’s South Wales has resulted in an increase in the quantity and quality of wool, says a report from ABC Rural. Local graziers are calling it a “win-win” situation. 

Grazier Graeme Ostini says his farm is now cutting “an amazing amount of wool.” And due to condensation from the solar panels, the sheep are able to graze almost entirely through the (Australian) drought years, says the report.  

Former grazier and farmer Tom Warren leases a portion of his land to a solar farm on which250 sheep graze under solar panels. Since leasing his land, his income has increased and the carrying capacity of his land has increased nearly 25%.  

“It’ll be because of the conditions the sheep are living in. It’s relatively clean, without burrs, without dust. There’s very, very little contamination of the wool and they’re protected from the sun as well,” said Warren. 

Madeline Taylor, energy policy and landholder rights researcher, said, “We’re starting to get a really good database of studies showing how the co-location of agriculture and photovoltaics can be done successfully. We’ve seen that it works really well for grazing. Now, believe it or not, cropping can also really work very well alongside solar energy,” according to ABC Rural. 

Agrisolar Will Continue on Former Australian Coal Plant Site

“The national CEFC and Octopus Australia said earlier this month that their joint venture (JV) is developing a 1.5GW renewable energy hub to help replace Victoria’s soon-to-retire Yallourn coal power plant. The pair said they will jointly develop Blind Creek Solar and Battery Project in Bungendore, New South Wales. The goal of Blind Creek is that it will co-locate renewable energy generation with regenerative agriculture and carbon sequestration. Sheep grazing will continue to take place on the site.”  – Energy Storage News

Clean Energy Could see Floating Solar Panels as the Next Big Thing

“Floating solar is still a new way of approaching solar power compared to the land-based panels we’re used to, but it appears to have a lot of potential in areas where land for solar farms is scarce or there is simply an abundance of water. The more solar we install, on the ground, on rooftops or even on the seas, the less we’ll be reliant on fossil fuels.” Popular Science

New England PV Plant Will Study Solar Impact on Biodiversity

“The University of New England’s own 3.2MW solar farm is proving its worth in more ways than one, not only as an independent renewable energy source for the university, but also as the setting of a pilot study to better understand the impact of large-scale solar on biodiversity. The study aims to learn whether solar plants are useful habitats for wildlife and if simple land management strategies during construction could better cater to native species.” – PV Magazine

Australian Guide to Agrisolar for Large-scale Solar Published by Clean Energy Council 

“As interest grows in agrisolar – using land for both agriculture and solar power – the Clean Energy Council has produced the Australian Guide to Agrisolar for Large-scale Solar to assist proponents of utility-scale solar and the landholders and farmers who work with them to integrate agricultural activities into solar farm projects.” – Renewable Energy Magazine 

Agrisolar: Solar Industry Hopes Farmers Will Help Solve Grid Access Problems  

“The Clean Energy Council says working with Australian farmers could help solve the growing problem of grid access for new large-scale solar farms, in a new paper promoting ‘agrisolar’” If done right, the paper argues solar farms can improve both grazing and crop land, while allowing solar farms to be built in areas where the electricity network is strong, providing a win-win for both solar developers and farmers.” – Renew Economy 

Dairies Powered By the Sun and Batteries: Trans-Tasman AgriSolar Start-up Gathers Pace 

“A New Zealand-based start-up offering dairy farmers cheap and reliable solar and battery-backed power purchase contracts has raised $4 million from an Australian-led investment round. Based in Christchurch, Solagri installs solar and batteries on dairy farms in the Canterbury region of New Zealand at no up-front cost, instead signing the farmers up to long-term PPAs guaranteed to supply 100% of their dairy sheds’ electricity needs.” – One Step off the Grid 

2 Connecticut Solar Farms Will Also Grow Crops 

“Connecticut-based Greenskies Clean Focus is bringing farming to solar fields across Connecticut. Following the recent green light from the Connecticut Siting Council, two new Greenskies solar power and agricultural co-use projects will break ground later this year in Orange and East Windsor. The solar array in Orange will act as a distributed energy resource facility benefiting the Connecticut State Colleges and Universities (CSCU) through a virtual net metering agreement.” – Solar Power World 

Australian Solar Farm Set to Co-exist with Existing Lamb Production 

“A potential 300MW solar farm with a 600MWh battery energy storage system founded by a group of local farmers in Bungendore, New South Wales, has gained backing from the federal government’s Clean Energy Finance Corporation and investment company Octopus Australia. As the project website details, the solar farm will co-exist with existing lamb production, which will be accommodated by placing the rows of panels around six meters apart, allowing for grazing as well as for the optimal performance of the planned single-axis tracking system.” – Renew Economy 

Solar Farm in Dunfermline Could Power Roughly 7,000 Homes 

“A new solar farm in Dunfermline will have the capacity to power 7,000 homes per year if it gets the green light. Plans for the energy park with 75,000 solar panels have been lodged with Fife Council at the former Lochhead open cast mine in Wellend. The company behind the application, Dunfermline Solar Ltd, part of AMPYR Solar Europe, says the plans will be a source of new low carbon power and supports the Scottish Government’s commitment to renewable energy.” – The Courier

The U.S. Department of Energy, Solar Energy Technologies Office has announced it award up to $8 million for agrivoltaic research through its Foundational Agrivoltaic Research for Megawatt Scale (FARMS) program. The research dollars are intended to examine how agrivoltaics can scale up to maximize land and increase farm revenue.

According to it’s funding announcement:

DOE expects to make between 4 and 6 awards under FARMS, each ranging from $1-2 million. SETO is interested in projects that partner with farmers who are pursuing climate-smart and sustainable agriculture and are considering agrivoltaics to enhance the economic efficiency and sustainability of these farms. Additionally, SETO is interested in projects that offer economic benefits to underserved communities in these farming areas.

This funding opportunity announcement (FOA) has three areas of interest:

  • Integrated agriculture-energy impact studies that investigate how agrivoltaic designs impact both agriculture production and energy production;
  • Socioeconomics of agrivoltaics research that studies how agrivoltaics can fit into existing agricultural communities and economies or enable new ones; and
  • Resources for replicable and scalable agrivoltaics that lower the barrier of entry to agrivoltaics, making it easier for interested agricultural producers and solar developers to benefit from the opportunities that agrivoltaics provides.

Letters of interest are due June 1 at 5 p.m. See the full funding announcement here.

Italian University Signs Four-Year Agrivoltaics Research Agreement

“Statkraft Italy has signed a four-year research agreement with the Department of Agro-Environmental and Territorial Sciences (DiSAAT) at the University of Bari Aldo Moro in Southern Italy. The title of the project is “Agri-photovoltaics for a sustainable future. The aim of the research activities is to deepen new approaches, methodologies, and innovative technologies in the field of electricity generation and agriculture, and to achieve the correct integration between photovoltaic systems and primary production, optimizing the yield in both fields. The solutions will be aimed at public administrations, entrepreneurs, farmers, and local communities,” – Statkraft

Rooftop Agrivoltaics Research Continues in Colorado

“While rooftop agrivoltaics is in its infancy, this vertically integrated approach to urban land use can increase resilience in urban food systems, expand renewable energy production, and decrease water consumption. The benefits associated with rooftop agrivoltaics warrant further investigation as we re-envision underutilized spaces in urban environments. Colorado State University is continuing research on rooftop agrivoltaics to analyze the growing conditions, yield, and power generation potential of these systems,” – Live Architecture Montioring

Arizona’s First Solar Closes Agreement with Silicon Ranch

“Arizona’s First Solar announced that it has come to terms on a multi-year master supply agreement with southern utility-scale solar developer, Silicon Ranch, under which First Solar will supply 4GWof advanced thin film photovoltaic modules to Silicon Ranch’s projects in the United States from 2023 to 2025. While this is not the first supply partnership to be reached between the two companies, the level of commitment dramatically expands on their prior partnership, under which First Solar has supplied modules to over 30 projects totaling more than 1GW since 2015.” – PV Magazine

Walt Disney World recently announced its plan to achieve net-zero greenhouse emissions by 2030 by installing two 75-megawatt solar arrays, according to a news release by One Green Planet. These arrays will result in roughly 40% of Disney World’s electricity being powered by solar energy.  

“Our commitment to the environment goes beyond imagining a brighter, more sustainable future by putting possibility into practice to ensure a happier, healthier planet for all,” said Jeff Vahle, president of Walt Disney World Resort, according to the news release. 

The project will include installing roughly 500,000 solar panels, which will produce more than 375,000-megawatt-hours of carbon-free solar energy within a year of operation. Other Disney locations, including Disneyland Paris, are developing solar installations such as solar parking-lot canopies, which reduce greenhouse emissions by 750 tons of carbon dioxide annually, according to One Green Planet.  

Conservation Blueprint, a company that works within the renewable energy industry to design, establish, and manage the final vegetative cover on solar energy projects, has partnered with the team at Walt Disney World to design seed mixtures to be used with the solar energy installations. Peter Berthelsen, a stakeholder with the AgriSolar Clearinghouse and president of Conservation Blueprint, stated, “Creating and managing renewable energy projects with pollinator benefits in mind is a great way to [achieve] environmental sustainability results.” 

The solar arrays will begin operations in 2023. The installation will make Disney the largest commercial consumer of solar energy in the state of Florida. 

Stanford University engineers have announced that they have developed a new type of solar cell capable of generating electricity not just during the day but also at night, according to a recent report by National Public Radio.  

The new technology includes a device that incorporates a thermoelectric generator, pulling electricity from “the small difference in temperature between the ambient air and the solar cell itself,” according to the report.  

A recent study published by the journal Applied Physics Letters states that the new solar device serves as “continuous renewable power source for both day- and nighttime, and the approach can provide nighttime standby lighting and power in off-grid and mini-grid applications, where solar-cell installations are gaining popularity.” 

To learn more about the new technology, read the NPR report here

USDA is soliciting nominations for members to serve on its newly formed USDA National Pollinator Subcommittee. The subcommittee will be part of the National Agricultural Research, Extension, Education, and Economics (NAREEE) Advisory Board, which provides feedback to the Secretary of Agriculture, USDA’s science agencies, and university collaborators on food and agricultural research, education, extension, and economics priorities and policies. USDA is seeking nominations for subcommittee members until May 31, 2022, from individuals with diverse expertise in pollinator health. USDA expects to appoint seven new Pollinator Subcommittee members for one- to three-year terms beginning in July 2022.

AgriSolar Clearinghouse Visits Biosphere 2 

“The AgriSolar Clearinghouse is taking a national tour of operational agrivoltaic operations, sharing knowledge, and bringing attention to a practice with numerous (and perhaps unexpected) benefits. The first stop on the tour is the agrivoltaic array at Biosphere 2, a research center run by the University of Arizona. Biosphere 2 is nothing short of incredible, it is a 3.14-acre laboratory in the middle of the hot, dry Sonoran Desert that is referred to as the world’s largest earth science experiment. Contained inside the massive facility is a climate-controlled environment, complete with ocean, rainforest, mangrove, desert, and savanna-simulating conditions.” – PV Magazine 

Rooftop Agrivoltaics Shows Potential to Revolutionize Urban Farming 

“Rooftop agrivoltaics have the potential to revolutionize urban farming. Just like the multifunctionality of agroforestry, which arguably revolutionized rural farming in the 1980s and 1990s, the multifunctionality of rooftop agrivoltaics can provide parallel co-benefits in urban spaces. Agroforestry has the co-benefits of growing food, sequestering carbon, and providing other ecosystem services in the same space – rooftop agrivoltaics is an urban analog. Although, rather than storing energy in the form of slow-growing biomass (wood), it harnesses the power of a rapidly renewable source – the sun.” – Live Architecture Monitor 

New Agrivoltaic Solar Canopy Designed in France 

French solar company TSE has released a new photovoltaic canopy for applications in agrivoltaic projects. The system features a rotating canopy that can host bifacial solar modules at a height of more than 5.5 meters. The canopy is placed on a four-post structure measuring 27 m x 12 m. “Our canopy is compatible with all agricultural machinery, including very large ones like combines, sprayers and spreaders,” the company’s president, Mathieu Debonnet, told pv magazine. The company said the canopy technology is particularly suitable for cereal farms that grow rapeseed, maize, barley, and vegetable protein, as well as sheep and cattle farms.” – PV Magazine