Financial Resources

Agrisolar Clearinghouse Icon

Homeowner’s Guide to the Federal Tax Credit for Solar Photovoltaics

This guide provides an overview of the federal investment tax credit for residential solar photovoltaics (PV). The federal residential solar energy credit is a tax credit that can be claimed on federal income taxes for a percentage of the cost of a solar PV system paid for by the taxpayer.
Agrisolar Clearinghouse Icon

New York Community Solar – Facility Decommissioning Plan

Delaware River Solar (“DRS”) proposes to build multiple photovoltaic (PV) solar facilities (each a “Solar Facility”) throughout New York State under New York State’s Community Solar initiative. Each Solar Facility is planned to have a nameplate capacity of approximately 2 megawatts (MW) alternating current (AC) and be built on a 10-12 acre parcel of private land (each a “Facility Site”). This Decommissioning Plan (“Plan”) provides an overview of activities that will occur during the decommissioning phase of a Solar Facility, including; activities related to the restoration of land, the management of materials and waste, projected costs, and a decommissioning fund agreement overview. This decommissioning plan is based on current best management practices and procedures. This Plan may be subject to revision based on new standards and emergent best management practices at the time of decommissioning. Permits will be obtained as required and notification will be given to stakeholders prior to decommissioning.
Agrisolar Clearinghouse Icon

One stone; two birds: concurrent pest control and pollination services provided by aphidophagous hoverflies

Biological pest control and pollination are vital ecosystem services that are usually studied in isolation, given that they are typically provided by different guilds of arthropods. Hoverflies are an exception, as larvae of many aphidophagous species prey upon agriculturally important aphid pests, while the adults feed on floral nectar and pollen and can be effective pollinators of important agricultural crops. While this is widely known, the concurrent provisioning of pest control and pollination by aphidophagous hoverflies has never been studied. Here, we compared the potential of two aphidophagous hoverflies, Eupeodes corollae and Sphaerophoria rueppellii to concurrently control the aphid Myzus persicae and improve pollination (measured as seed set and fruit weight) in sweet pepper (Capsicum annuum). In a first semi-field experiment, aphid populations were reduced by 71 and 64% in the E. corollae and S. rueppellii treatments, respectively, compared to the control. In a second experiment, the aphid population reduction was 80 and 84% for E. corollae and S. rueppellii, respectively. Fruit yield in aphidinfested plants, was significantly increased by 88 and 62% for E. corollae and S. rueppellii, respectively, as compared to the control. In a separate trial, where the plants were not infested with aphids, yield increased by 29 and 11% for E. corollae and S. rueppellii, respectively, even though these differences were not statistically significant. The increase in seed set in the hoverfly treatments was statistically significant in both pollination experiments, i.e. independently of the presence of aphids. These results demonstrate, for the first time, that aphidophagous hoverflies can concurrently provide pest control and pollination services.
Agrisolar Clearinghouse Icon

Techno-economic feasibility analysis of Benban solar Park

By 2035, Egypt pursues to generate 22% of the total electricity from photovoltaic power plants to meet the national spreading demand for electricity. The Egyptian government has implemented feed-in tariffs (FiT) support program to provide the economic incentives to invest in the PV power plants. The present study is carried out to evaluate the techno-economic feasibility of a largescale grid-connected photovoltaic (LS GCPV) of the Benban Solar Park with a total capacity of 1600 MW AC producing annual electricity of 3.8 TWh. The characteristics of PV panels considering the meteorological data of Benban Solar Park are evaluated. Additionally, the reduction of greenhouse gas (GHG) emissions due to constructing Benban Solar Park is assessed. As well, the influences of annual operation and maintenance cost and the interest rate on the electricity cost and the payback period are evaluated. The results indicate that the electricity cost is about 8.1¢US/kWh with 10.1 years payback period, which is indeed economically feasible with an interest rate of 12%. Furthermore, the Benban Solar Park will avoid annually almost 1.2 million tons of greenhouse gas. The working conditions of the previous study which aimed to improve the performance of solar panels using cooling water are similar to the Benban solar Park. This study showed that utilizing of water cooling for solar panels leads to an increase in the electrical energy output by 8.2%. This attributed to maximizing the benefit when cultivating the vast land area on which the station is built, and using the irrigation water to cool the PV panels, and then for the irrigation process. Thus, a double advantage can be achieved; first, an increase in the electrical energy output by 8.2% in the summer months where the panel surface temperature is high. Second, the agricultural crops as an economic value, as the solar panels are located at a height of 1.5m from the surface of the earth. The PV solar panels are installed above the existing cultivated areas while the maintained spaces among rows of PV modules provide the necessary solar radiation for crops.