Shading and Irradiance

Agrisolar Clearinghouse Icon

Photosynthetically Active Radiation Decomposition Models for Agrivoltaic Systems Applications

Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well-known to be essential for the prediction of solar photovoltaic systems performance. In open-field agrivoltaic systems, that is the dual use of land for both agricultural activities and solar power conversion, cultivated crops receive an unequal amount of direct, diffuse and reflected photosynthetically active radiation (PAR) depending on the area they are growing due to the non-homogenously shadings caused by the solar panels installed (above the crops or vertically mounted). It is known that PAR is more efficient for canopy photosynthesis under conditions of diffuse PAR than direct PAR per unit of total PAR. For this reason, it is fundamental to estimate the diffuse PAR component in agrivoltaic systems studies to properly predict the crop yield.
Agrisolar Clearinghouse Icon

GROUND IRRADIANCE MODELLING: OF KEY IMPORTANCE FOR DESIGNING NATURE INCLUSIVE SOLAR PARKS AND AGRIVOLTAICS SYSTEMS

Solar electricity from solar parks in rural areas are cost effective and can be deployed fast therefore play an important role in the energy transition. The optimal design of a solar park is largely affected by income scheme, electricity transport capacity, and land lease costs. Important design parameters for utility-scale solar parks that may affect landscape, biodiversity, and soil quality are ground coverage ratio, size, and tilt of the PV tables. Particularly, low tilt PV at high coverage reduces the amount of sunlight on the ground strongly and leads to deterioration of the soil quality over the typical 25-year lifetime. In contrast, vertical PV or an agri-PV design fairly high above the ground leads to more and homogeneous ground irradiance; these designs are favored for pastures and croplands. In general, the amount and distribution of ground irradiance and precipitation will strongly affect which crops can grow below and between the PV tables and whether this supports the associated food chain. As agrivoltaics is the direct competition between photosynthesis and photovoltaics. Understanding when, where and how much light reaches the ground is key to relate the agri-PV solar park design to the expected agricultural and electricity yields.
Agrisolar Clearinghouse Icon

Impact of an Agriphotovoltaic System on Metabolites and the
Sensorial Quality of Cabbage (Brassica oleracea var. capitata)
and Its High-Temperature-Extracted Juice

This report discusses the goal of agrisolar systems, which would generate electricity from raised solar panels and allow crop cultivation under the solar panels, and their development. Details of the report include the effect of raised solar panels and their effect on shading, which affects factors of the crops development. This information can be used to potentially optimize the design of agrisolar operations to most effectively benefit the crops included in the agrisolar operation.
Agrisolar Clearinghouse Icon

Lettuce Production under Mini-PV Modules Arranged in Pattern Designs

This study examines a variety of percentages of the total area covered with shade produced by photovoltaic modules on rooftop lettuce crops. The results of the study suggest that in areas of high radiation and temperature(s), it is possible to use the same area on rooftops to produce photovoltaic energy and effectively cultivate plant species that demand little sunlight, such as lettuce. These conclusions mean that rooftop agrisolar is effective when the strategies in this study are taken into consideration.
Agrisolar Clearinghouse Icon

Agrivoltaics Provide Mutual Benefits Across the Food-Energy-Water Nexus in Drylands

The vulnerabilities of our food, energy, and water systems to projected climatic change make building resilience in renewable energy and food production a fundamental challenge. We investigate a novel approach to solve this problem by creating a hybrid of colocated agriculture and solar photovoltaic (PV) infrastructure.