In this study, a Consequential Life‐Cycle Assessment (CLCA) was conducted to holistically assess the environmental consequences arising from a shift from single‐use agriculture to agrivoltaic systems (AVS) in Germany. The results of the study show that the environmental consequences of the installation of overhead AVS on agricultural land are positive and reduce the impacts in 15 of the 16 analyzed impact categories.
This two-year study aimed to analyze whether intermittent shading produced by panels placed over grapevines can delay grape ripening to counter the impact of global warning on phenology. Researchers concluded that intermittent shading produced by panels can shift ripening into a cooler period compared to unshaded plants. They also state that shading intensity and duration should be adapted to evaporative and soil water conditions to benefit from the phenological delay caused by panels, without altering production in the long term.
Researchers analyzed and compared the costs for an agrivoltaic system with the cost of plastic covers for blueberry crops in Chile. They also introduce a metric to calculate the price for covering cropland with an agrivoltaic system.
This paper applied an open-source spatial-based model to quantify the solar power generation (the ground-mounted photovoltaic panels) for the southern regions of Poland and
Ukraine. Researchers then compared economic indicators of the solar power generation and the crop production projects for rain-fed land. The analysis revealed that the PV projects have higher net present value, but lower profitability index compared to the crop production.
This PhD dissertation addresses four primary questions: 1.) To what extent is plant-available radiation reduced by solar panels of a photovoltaic system? 2.) How does this effect parameters of aerial and soil climate? 3.) How do the cultivated crops respond to the altered cropping conditions with regard to plant growth and development? 4.) What consequences does this have regarding the yields and the chemical composition of the investigated crop-species? A field experiment in which grass clover, potatoes, celery, and winter wheat were planted under a photovoltaic facility in Southwest Germany was conducted to answer these questions.
This study evaluates green bean cultivation inside greenhouses with photovoltaic (PV) panels on the roof. Researchers found that the beans adapted to the change in shading by relocating more resources to the stems and leaves. As a result, average yield decreased compared to that of a conventional greenhouse. However, an economic trade-off between energy and crop yield can be achieved with a panel coverage of 10%. The research also provides an experimental framework that could be replicated and used as a decision support tool to identify other crops suitable for solar greenhouse cultivation.
The effect of shading on the performance of Cabernet Sauvignon was studied. Significant different levels of canopy density were created using the growth of neighbouring vines, thus ensuring no artificial change in natural light composition. Light penetration in these canopies differed significantly between treatments. Berry mass, bunch mass and yield as well as skin colour were decreased with increasing levels of shading, while pH, K-concentration and TT A were increased. Tartaric acid decreased while malic acid increased with an increase in shading. Wine quality was negatively affected.

The rate of solar power generation is increasing globally at a significant increase in the net electricity demand, leading to competition for agricultural lands and forest invasion. Agrivoltaic systems, which integrate photovoltaic (PV) systems with crop production, are potential solutions to this situation. Currently, there are two types of agrivoltaic systems: 1) systems involving agricultural activities on available land in pre-existing PV facilities, and 2) systems intentionally designed and installed for the co-production of agricultural crops and PV power. Agrivoltaic systems can boost electricity generation efficiency and capacity, as well as the land equivalent ratio. They also generate revenue for farmers and entrepreneurs through the sale of electricity and crops. Therefore, these systems have the potential to sustain energy, food, the environment, the economy, and society. Despite the numerous advantages of both types of agrivoltaic systems, few studies on utilizing the available land area under existing ground-mounted PV systems for agricultural crop production have been conducted. Moreover, with several conventional solar power plant projects currently underway around the world, an expanding trend is anticipated. As a result, this article offers practical advice for agrivoltaic systems on how to implement an agricultural area under ground-mounted PV power systems without agricultural pre-plans. These systems are useful for policymaking and optimizing land use efficiency in terms of energy production, food supply, environmental impact, local economy, and sustainable societies.

Climate change and extreme weather affect tea growing. A competitive tea market needs quick, short-term solutions. This study evaluates the effects of various shade nets under mild and extreme cold stress on tea leaf physiology, photosynthetic alterations, antioxidant activities, and physiochemical characteristics. Tea plants were treated with SD0 (0% non-shading), SD1 (30% shading), SD2 (60% shading), and SD3 (75% shading). The 30%, 60%, and 75% shade nets shielded tea leaves from cold damage and reduced leaf injury during mild and extreme cold conditions compared with SD0% non-shading. Shading regulates photochemical capacity and efficiency and optimizes chlorophyll a and b, chlorophyll, and carotenoid contents. Moreover, carbon and nitrogen increased during mild cold and decreased in extreme cold conditions. Shading promoted antioxidant activity and physiochemical attributes. In fact, under 60% of shade, superoxide dismutase, peroxidase, catalase, and -3 alpha-linolenic acid were improved compared with SD0% non-shading during both mild and extreme cold conditions. From these findings, we hypothesized that the effect of different shades played an important role in the protection of tea leaves and alleviated the defense mechanism for “Zhong Cha 102” during exposure to a cold environment.
This paper shows that agrivoltaic systems allow us to reach sustainable food and electricity goals
with high land-use efficiency. The study shows the yield, antioxidant capacity, and secondary metabolite
of broccoli and electricity production were analyzed under an agrivoltaic system over three cultivation
periods. The study also reports that agrivoltaic with additional shading treatment produced greener broccoli with a higher level of consumer preference than open-field grown ones.
This study discusses the analytics of tracking and backtracking for PV plants with various trackers after being converter to agrisolar plants or operations. Some of the details included in this report are: astronomical considerations, hedgerow crop height, tracking axis's with and without crops, daily incidental radiation and solar declination, among other topics. These results could be used for implementing new strategies in future agrisolar operations.
This report discusses the goal of agrisolar systems, which would generate electricity from raised solar panels and allow crop cultivation under the solar panels, and their development. Details of the report include the effect of raised solar panels and their effect on shading, which affects factors of the crops development. This information can be used to potentially optimize the design of agrisolar operations to most effectively benefit the crops included in the agrisolar operation.
This study examines a variety of percentages of the total area covered with shade produced by photovoltaic modules on rooftop lettuce crops. The results of the study suggest that in areas of high radiation and temperature(s), it is possible to use the same area on rooftops to produce photovoltaic energy and effectively cultivate plant species that demand little sunlight, such as lettuce. These conclusions mean that rooftop agrisolar is effective when the strategies in this study are taken into consideration.
This article describes a planned three-year study (2019-2022) to understand the effect of shading below solar panels in apple production. This study includes tree water status, irrigation requirements, and fruit growth. The first-year results show that the presence of solar panels on top of apple trees improved their water status with less water applied in the period prior to harvest without any negative effects in fruit growth rates than with trees that had no solar panels.
This thesis examines the crop outputs for Swiss chard, kale, pepper, and broccoli in an agrisolar system with different gap spacings between solar panel clusters. It concludes that the biomass crop yields of agrisolar plots are restricted significantly for Swiss chard, kale, or pepper compared against the full-sun control plot yields but not for broccoli stem and leaf yields.
This article concerns research conducted at a 100-m2 experimental farm with three sub-configurations: no modules (control), low module density, and high module density. In each configuration, 9 stalks/m2 were planted 0.5 m apart. The biomass of corn stover grown in the low-density configuration was larger than that of the control configuration by 4.9%. Also, the corn yield per square meter of the low-density configuration was larger than that of the control by 5.6%.
This article reviews factors that influence solar PV and agronomic management in agrisolar systems. The authors conclude that several adjustments for crop selection and management are needed due to light limitation, microclimate condition beneath the solar structure, and solar structure constraints. The authors also conclude that a systematic irrigation system is required to prevent damage to the solar panel structure.
This study investigates the effects of semi-transparent, wavelength-selective OPV solar on a greenhouse tomato crop in the arid southwestern U.S. This study demonstrates that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.
This study concerns lettuce grown beneath solar panels and found large leaf size and yield in lettuce grown under the panels. The authors suggest optimizing solar panel shade and lettuce varieties for optimal co-location.
This Master’s Thesis includes research findings on the performance of agrivoltaic systems with stilt-mounted photovoltaic (PV) panels on farmland. The results showed that the stilt-mounted agrivoltaic system can mitigate the trade-off between crop production and clean energy generation even when applied to shade-intolerant crops.
This report includes a discussion of vegetation-centric approaches to the co-location of solar energy and vegetation, including harvestable crops.
This study investigates the effects of solar photovoltaic panel designs on lettuce growth.
This study investigates a hybrid of co-located agriculture and solar photovoltaic (PV) infrastructure by monitoring micro-climatic conditions, PV panel temperature, soil moisture and irrigation water use, plant eco-physiological function and plant biomass production within a agrivoltaic ecosystem and in traditional PV installations and agricultural settings to quantify trade-offs. Authors find that shading by the PV panels provides multiple additive and synergistic benefits, including reduced plant drought stress, greater food production and reduced PV panel heat stress.
This North American Center for Saffron Research and Development reports the findings of two years of study on growing saffron under solar panels at the Peck Electric solar field in Burlington, VT. Updated Feb '22.
This article describes the impact of crop spacing and PV module design on tomatoes in a greenhouse.
This study describes a foldable solar PV structure developed to grow pear crops in Korea.
This resource provides practical advice for farmers considering installing solar photovoltaic systems.
This article provides an overview of solar-suitable crops in Germany. It contrasts the performance, imitations, and possible agrisolar synergies of large-scale crops compared to small-area specialized crops.
This article reports the findings of a studied on kale, broccoli, chard, peppers, tomatoes, and spinach grown in the partial shade of a solar photovoltaic system.
This article reports findings from the ACRE farm in West Lafayette, Indiana, which includes single-axis trackers in a novel configuration atop a maize test plot.
This article describes a study of potatoes grown under solar panels. The study concludes that the panels promote potato plant grow but do not provide protection from frost.
This articles includes research findings of a study conducted on grapes that were cultivated on land that was divided into six sections: three with photovoltaic panels and three without. The study did not find a difference in grape growth but did find a slight slowing of grape growth under the solar panels. The sugar content was slightly higher in the experiment group.
This article describes a simulated maize (corn) crop, grown under an agrivoltaic system trademarked Agrovoltaico.
The article concerns changes in microclimatic conditions in an agrisolar system within an organic crop rotation. Crops include celeriac, winter wheat, potato, and grass-clover cultivated both underneath solar PV panels system and on an adjacent reference site without solar panels. Alteration in microclimatic conditions and crop production under solar PV was confirmed including reduced photosynthetic active radiation, soil temperature, soil moisture, and air temperatures.
This article concerns a study conducted at the Biosphere 2 Agrivoltaics Learning Lab. The study found that an agrivoltaic installation can significantly reduce air temperatures, direct sunlight and atmospheric demand for water relative to nearby traditional agricultural settings.
This article describes the microclimate and growth characteristics of tomato plants (Solanum lycopersicon var. Legend) grown within three locations on an Agrivoltaic field (control, interrow, and below panels) and with two different irrigation treatments. Total crop yield was highest in the control fully irrigated areas and decreased as shading increased.