Colloidal quantum dots (QDs) are nanometer-sized semiconductor crystals grown via low-cost solution processing routes for a wide array of applications encompassing photovoltaics, light-emitting diodes (LEDs), electronics, photodetectors, photocatalysis, lasers, drug delivery, and agriculture. A comprehensive technoeconomic cost analysis of perovskite quantum dot optoelectronics is reported. Using economies-of-scale considerations based on price data from prominent materials suppliers, we have highlighted that increased QD synthesis yield, solvent recycling, and synthesis automation are critical to market adoption of this technology and driving quantum dot film fabrication costs down from >$50/m^2 to ∼$2−3/m^2

Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

Collocating solar photovoltaic (PV) technology with agriculture is a promising approach towards dual land productivity that could locally fulfil growing food and energy demands particularly in rural areas. This ’agrivoltaic’ (AV) solution can be highly suitable for hot and arid climates where an optimized solar panel coverage could prevent excessive thermal stress during harsh weather thereby increasing the crop yield and lowering the water budget. One of the concerns with using standard fixed tilt solar array structure that faces north/south (N/S) direction for AV farming is the spatial heterogeneity in the daily sunlight distribution for crops and soil water contents, both of which could affect crop yield. Dynamic tilt control through a tracking system can eliminate this problem but could increase the system cost and complexity. Here, we investigate east/west (E/W) faced vertical bifacial panel structure for AV farming and show that this could provide a much better spatial homogeneity for daily sunlight distribution relative to the fixed tilt N/S faced PV structure implying a better suitability for monoculture cropping.

Montana Renewable Energy Association (MREA) gives steps, tips, and tricks to install solar at your home, businesses, farm or ranch, or school to save money on energy and increase your energy independence. Installing solar at your home, businesses, farm or ranch, or school will save you money on your energy bills and increase your energy independence. (1) Gather information: Do some research online and talk to the Montana Energy Office at the Dept. of Environmental Quality and a renewable energy advocate like the Montana Renewable Energy Association (MREA). A few questions to consider: Do you have a location on your property in mind already? Roof? Ground? Does the location get sun? Do you want to stay connected to the grid, or go off-grid? What is your budget for the project? (2) Contact local solar installers: Request bids from several installers to find the right fit and price for you. Ask for an in-person site visit to assess structural issues, electrical connections, and shading. Review historical energy usage to size the system properly. Discuss your energy goals. Do you want to cover all of your energy use or just some? (3) Review costs and financing: Does the cost meet your budget? Will you save as much as you were hoping on your energy bills? What tax credits are available to you? What loan or financing options are available? (4) Sign a contract: Once you’ve made your decision to move forward, contact your installer and sign a contract. Then, work can begin! (5) Installation: The timeline will depend on things like weather and the installer’s schedule, and inspection appointments. For net metering customers, expect additional time for the utility to install your net meter. (6) Start producing energy: Congratulations! Every kWh you produce is saving you money and increasing your energy independence.

This report compares the economics of a solar rooftop mandate for new detached residential homes with a conventional home with gas heating and central air-conditioning. The home with rooftop solar is assumed to be an all-electric, net-zero-energy home that would generate as much solar electricity on its rooftop each year as it uses. The gas-heated home would be built to the same standard in all respects other than the gas space and water heating and gas cooking are replaced by efficient electric devices in the net-zero-energy home. The context is Montgomery County’s 2017 ambitious climate emergency resolution and a more recent statement by County Executive Marc Elrich about the possibility of a rooftop solar mandate. The County’s goal is to reduce greenhouse gas emissions by 80% by 2027 and achieve 100% elimination of emissions by 2035

Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. We use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover.

The potential resource base for PV in the United States is enormous; however, there are a number of challenges related to realizing this potential including relatively high cost, intermittent output, and potentially significant land use. The costs of PV have been declining significantly during the past couple of decades, and there are strong prospects for further declines in cost during the next decade. The issue of intermittency can be addressed through a number of potential means, and will likely become increasingly important as market penetration increases beyond a few percent of electricity consumption. The issue of land use is often cited as an important issue for renewable energy technologies. Determining the land requirements of solar PV at high penetration helps evaluate its potential to reduce both the carbon emissions and the “Ecological Footprint” associated with electricity generation and use.

Agrisolar is a rapidly expanding sector with incredible potential. It brings together two major sectors of our society and economy: agriculture and energy. The goal of this guide is to draw on past experiences, to take stock of “what works” and “what doesn’t,” in order to advise local and international actors on successfully developing Agrisolar. This first edition of the SolarPower Europe Agrisolar Best Practices Guidelines takes a step in joining forces with agricultural stakeholders to better understand how the solar and agricultural sector can work more closely together, enhancing synergies to advance the energy and climate transition. Every Agrisolar project is unique as it must be adapted to the local agronomical, environmental, and socioeconomic conditions of the project site, and adapted to the needs of farmers and other relevant stakeholders. The most important element to ensure that Agrisolar projects perform effectively as agricultural and photovoltaic projects is to begin by clearly defining a Sustainable Agriculture Concept. Defining a Sustainable Agriculture Concept means assessing how to improve the sustainability of the agricultural practices carried out on site, assessing whether the project can provide local ecosystem services, assessing how it can be best integrated within the local social and economic setting, all while generating clean electricity. Following best practices throughout all 19 areas identified in these guidelines will ensure Agrisolar projects deliver tangible benefits, as planned in the Sustainable Agriculture Concept.

This document identifies the important aspects of building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed. This document addresses photovoltaic (PV), solar hot water (ST), and solar ventilation preheat (SVP) systems.

This study aims to analyze a PV power plant type rainwater harvesting system (PVPPRWHS) in a 600 kW grid-connected solar photovoltaic (PV) power plant. An experimental rainwater harvest was carried out in only 128 m2 of the Altınoluk Solar Power Plant, which has a surface area of 4320 m2. This study showed that the potential for collecting rainwater from a small part of the PV plant is approximately 118 m3 per year and that the harvesting system will reach 1646 m3/year when applied to the whole plant. The harvested rainwater is used for panel cleaning and agriculture to combat climate change and drought.