Delaware River Solar (“DRS”) proposes to build multiple photovoltaic (PV) solar facilities (each a “Solar Facility”) throughout New York State under New York State’s Community Solar initiative. Each Solar Facility is planned to have a nameplate capacity of approximately 2 megawatts (MW) alternating current (AC) and be built on a 10-12 acre parcel of private land (each a “Facility Site”). This Decommissioning Plan (“Plan”) provides an overview of activities that will occur during the decommissioning phase of a Solar Facility, including; activities related to the restoration of land, the management of materials and waste, projected costs, and a decommissioning fund agreement overview. This decommissioning plan is based on current best management practices and procedures. This Plan may be subject to revision based on new standards and emergent best management practices at the time of decommissioning. Permits will be obtained as required and notification will be given to stakeholders prior to decommissioning.

Biological pest control and pollination are vital ecosystem services that are usually studied in isolation, given that they are typically provided by different guilds of arthropods. Hoverflies are an exception, as larvae of many aphidophagous species prey upon agriculturally important aphid pests, while the adults feed on floral nectar and pollen and can be effective pollinators of important agricultural crops. While this is widely known, the concurrent provisioning of pest control and pollination by aphidophagous hoverflies has never been studied. Here, we compared the potential of two aphidophagous hoverflies, Eupeodes corollae and Sphaerophoria rueppellii to concurrently control the aphid Myzus persicae and improve pollination (measured as seed set and fruit weight) in sweet pepper (Capsicum annuum). In a first semi-field experiment, aphid populations were reduced by 71 and 64% in the E. corollae and S. rueppellii treatments, respectively, compared to the control. In a second experiment, the aphid population reduction was 80 and 84% for E. corollae and S. rueppellii, respectively. Fruit yield in aphidinfested plants, was significantly increased by 88 and 62% for E. corollae and S. rueppellii, respectively, as compared to the control. In a separate trial, where the plants were not infested with aphids, yield increased by 29 and 11% for E. corollae and S. rueppellii, respectively, even though these differences were not statistically significant. The increase in seed set in the hoverfly treatments was statistically significant in both pollination experiments, i.e. independently of the presence of aphids. These results demonstrate, for the first time, that aphidophagous hoverflies can concurrently provide pest control and pollination services.

This American Solar Grazing Association Beekeeping Agreement Template is a template for a contract between a solar site operator and a beekeeper for the establishment and maintenance of a solar site apiary. The arrangements outlined in this template may provide a number of benefits to both solar-site operators and beekeepers.

This agreement template example, from the American Solar Grazing Association, Inc., is an example of a limited vegetation maintenance agreement between a solar site manager and a sheep farmer. The example includes terms of the agreement between parties and details regarding obligations under various circumstances for the duration of the contract.

This agreement template example, from the American Solar Grazing Association, Inc., is an example of a comprehensive vegetation maintenance agreement between a solar site manager and a sheep farmer. The example includes instructions for using a contract template, terms of the agreement between parties and details regarding obligations under various circumstances for the duration of the contract.