This guide serves to help landowners navigate the complex and challenging decision process of whether to enter a solar lease. It presents key issues to consider and information to gather prior to making a decision, offers communication skills to help guide conversations with others connected to the land, and provides tips and tools for negotiating with the solar company on the terms of a solar lease.

Written for the AgriSolar Clearinghouse by Alexis Pascaris (Agrisolar Consulting) and Allison Jackson (Colorado Agrivoltaic Learning Center)

The Agrisolar Policy Guide was designed to facilitate policy learning and innovation in the United States. By collating existing initiatives and key provisions, this guide serves as a resource for regulators, land use planners, decision makers, and others who are interested in state-of-the-art agrisolar policy. The AgriSolar Clearinghouse is impartial towards policy; the intention of this guide is not to advocate for certain initiatives, but to provide a central platform for education and engagement. The goal of this guide is to support policy innovation for better co-location.

This publication from the University of Missouri Extension uses information developed by land grant universities, in states where solar energy development is more common, to inform landowners that are considering utility-scale solar energy development land leases.

This law bulletin from Ohio State University provides a number of things to do, issues to consider, people to consult, and questions to ask before and after signing a solar lease.

This guide presents considerations for landowners looking at leasing their land for solar development.

This paper shares an overview of both active and passive cooling approaches in solar PV applications with an emphasis on newly developed agrivoltaic natural cooling systems.

In this paper, researchers perform data analysis to detail the per-activity and total O&M costs for vegetation management at PV sites with different ground covers and management practices.

This research looks at the decision factors informing private landowners’ decisions to host solar sites on their land through a case study in California. Applying land system science and agricultural decision-making theory, we find that landowner decisions to host utility scale solar sites are based on profit-maximization, water availability, visual and ecological landscape values, and agricultural land preservation ethic.

This paper addresses the environmental effects of solar panels on an unirrigated pasture that often experiences water stress. Changes to the microclimatology, soil moisture, water usage, and biomass productivity due to the presence of solar panels were quantified.

This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over two years in Oregon. This study showed that successful agrivoltaic systems are possible where lamb and energy production can be produced simultaneously from the same land. Comparable spring lamb growth and liveweight production per hectare from open and solar pastures demonstrate that agrivoltaic systems would not decrease the production value and potential of the land. In investigating the land use equivalence ratio, agrivoltaics enables increasing the land productivity up to 1.81 for pasture production and 2.04 for spring lamb production through combining sheep grazing and solar energy production on the same land as compared to single use systems. In addition to the increased land productivity and improved animal welfare, the results from this study support the benefits of agrivoltaics as a sustainable agricultural system. Overall, lower pasture yields under in fully shaded areas under the solar panels were the main cause of inferior pasture production in agrivoltaic sites. When designing pasture mixtures for agrivoltaic systems, a selection of pasture species that are not only tolerant to shade but also persistent under heavy traffic should be considered. Limiting the daily grazing time (e.g., on-off grazing: 3 h-grazing/d only) or rotational grazing pastures at low grazing intensities may be viable options for sustainable grazing of seasonally wet soils under solar panels.