Tag Archive for: AgriSolar

This study reviews and analyzes the technological and spatial design options that have become available to date implementing a rigorous, comprehensive analysis based on the most updated knowledge in the field, and proposes a thorough methodology based on design and performance parameters that enable us to define the main attributes of the system from a trans-disciplinary perspective. Agrivoltaic systems have been the subject of numerous studies due to their potential in the food–energy nexus. Demonstrative projects with new conceptual designs based on PV modules for covering open fields have shown promising results through optimizing light availability while reducing the need for irrigation and protecting from extreme weather phenomena.

This study addresses spherical micro-cells that are a semi-transparent photovoltaic (PV) technology which can contribute to improve the sustainability of greenhouse systems. The prototype STM is promising for greenhouse roof applications and its performance can be improved by increasing the conversion efficiency. Results of the study show that the balance of the light distribution for plant growth and electricity production should be designed carefully according to the nature of the light requirements of cultivated plants in the greenhouse.

The purpose of this study is to present the potentiality of an innovative prototype photovoltaic greenhouse with variable shading to optimize energy production by photovoltaic panels and agricultural production. The results show how the shading variation enabled regulation of the internal radiation, choosing the minimum value of necessary radiation, because the internal micro-climatic parameters must be compatible with the needs of the plant species grown in the greenhouses. In agrivoltaic systems, these considerations could be useful in optimization of the operations identified in this study.

In an effort to help to improve the returns of farming in an environmentally acceptable way, the project’s objective is to In an effort to help to improve the returns of farming in an environmentally acceptable way, the project’s objective is to investigate the feasibility of a small size electric farming tractor, which shall be able to use locally generated renewable energy. The project’s aim is to evaluate the feasibility of an electric micro tractor system for small-scale family farming that can be propelled by locally generated renewable energy. These applications could be applied in agrivoltaic developments, which include producing renewable energy and crops.

This paper discusses solar-powered agricultural tools in India. Some of the tools used for agrivoltaic operations discussed in this paper are water-pumping systems, solar dryers, solar greenhouses and solar electric fences. The paper also states that agrivoltaic tools require less maintenance than the tools used in producing conventional energy tools.

The aim of this study is to present a potential, alternative solution regarding the covering of energy needs, required for farming activities related to the arable lands. This paper elaborates on the energy balance between solar-energy generation and the demands of the farming activities in the field. The main parts of this concept are, the solar array scheme, the electric motor of the tractor and of course the battery that will store the energy from panels and produce it to farming tractor, while operating in the field.

In this paper, a novel UGV (unmanned ground vehicle) for precision agriculture, named “Agri.q,” is presented. The Agri.q has a multiple degrees of freedom positioning mechanism and it is equipped with a robotic arm and vision sensors, which allow to challenge irregular terrains and to perform precision field operations with perception.

This guide has been developed to share knowledge and learnings from agrisolar practices around Australia and the world, to assist proponents of utility-scale solar, and the landholders and farmers who work with them to integrate agricultural activities into solar farm projects. As solar grazing is the dominant form of agrisolar for utility-scale solar, this guide has a strong focus on sharing the knowledge and learnings from Australian projects that have integrated solar grazing practices to date, providing case studies, information on solar-grazing benefits and practical guidance for agrivoltaic developers.

Written by the Center for Rural Affairs, this report reveals the benefits of mixing solar power and native vegetation. The report identifies types of solar projects, including residential, community-scale and utility-scale and their relations to native bees, monarch butterflies, pheasants and quail and soil and water quality. In the report, there is a plan available for those looking to optimize the health of native plants for the benefit of pollinators. The study discussed here also covers seed-mix selection, methods for seeding the vegetation and managing the site(s) afterwards.

This report highlights the benefits, value, and policy considerations of pollinator-friendly solar. It also explains methods to building a pollinator-friendly site. The report covers planning, costs and seeding practices as well as timing impacts for wildlife and pollinators. Policy considerations for public and private stakeholders are also discussed in this report.