Tag Archive for: Agrivoltaics

By Dan Salas, University of Illinois Chicago, Energy Resources Center – Sustainable Landscapes Program

The iconic monarch butterfly faces numerous threats in its migration across North America. Habitat loss, invasive species, pesticide use effects, disease, drought, and changing temperatures have collectively squeezed a vice of stressors on monarch butterfly populations. At the same time, the U.S. is undergoing a great energy transition towards renewable energy. Development of large utility-scale solar and other renewable energy projects is transforming landscapes in some parts of the country.

What will this energy transformation mean for pollinators like the monarch butterfly? That largely depends on the landscape change it brings. Fortunately, this changing landscape has given birth to a new form of land use: agrivoltaics. Agrivoltaics is the coupling of energy generation and agricultural production and can be represented by a mix of land uses that produce on-farm income, like grazing, crop production, or honeybee hive management. Agrivoltaics may also include ecovoltaics which often refers to establishing pollinator habitat. Such pollinator habitat can also benefit on-farm yields in surrounding croplands[1].

Can Solar Energize the Monarch Migration?

The Solar Futures Study[2] published in 2021 by the U.S. Department of Energy estimates that as much as 10.2 million acres may be required for solar development to achieve the 2050 renewable energy targets. Incorporating agrivoltaics into these changing lands can help diversify agricultural economies, reduce pesticide use, and increase pollinator habitat. But can these lands also help fuel the monarch migration?

The monarch butterfly population has undergone severe declines since the 1980s. This past winter (2023-2024) reported the second lowest populations for eastern monarch butterflies since they have been measured[3]. As noted, these declines are the result of a combination of factors, chief among them habitat loss and degradation. Loss of habitat reduces the butterflies’ resilience to other stressors, such as pesticide use, severe weather, and drought.

Pollinator Habitat Can be Risky Business

While greatly needed, creating pollinator habitat can be risky business for solar operators. But it’s not the potential for stinging insects that draws concern; statistically speaking, people have a better chance of dying from catastrophic storms than from a bee sting[6].

Rather, providing habitat to species at risk of extinction, while noble and beneficial, may unintentionally result in increased regulatory restrictions and operational limitations on a site operator. A species listed under the U.S. Endangered Species Act (or comparable tribal or state regulations) can add time, cost, and complexity to managing land and maintaining facilities over the life of a project.

Rewarding a Helping Hand

For this reason, the Rights-of-Way as Habitat Working Group, facilitated by the University of Illinois Chicago’s (UIC) Sustainable Landscapes Program, created a conservation agreement known as the Monarch CCAA (Candidate Conservation Agreement with Assurances). This agreement promotes upfront commitments to sustain or create habitat for the monarch butterfly. In exchange, companies receive regulatory assurances that no additional endangered species regulations will be required in recognition of their proactive conservation commitments.

This prospect has motivated solar developers and owners to consider enrolling in the program. Since its authorization in 2020, the program has resulted in over one million acres of monarch habitat commitments across the U.S. While being the largest voluntary conservation agreement in the U.S., it still requires more enrollment to achieve the levels of conservation needed for the butterfly. Previous studies have suggested that millions of acres of monarch habitat are required to achieve levels of conservation needed to avoid the threat of the migratory butterfly population’s extinction[7].

Biodiversity and wildlife habitat have been marginalized (literally) along field edges, fencerows, roadsides, and utility corridors. The Monarch CCAA offers energy and transportation land managers a chance to demonstrate commitments for monarch conservation, biodiversity net gain, and support for recovering other at-risk species.

Solar companies considering enrollment are encouraged to review resources available on the Monarch CCAA Toolkit[8], including enrollment guidance, webinars, and the application form. Contact UIC’s Sustainable Landscapes team with additional questions at dsalas4@uic.edu.

Learn More About the Monarch CCAA

The Rights-of-Way as Habitat Working Group at the University of Illinois-Chicago led a national collaborative effort to develop a voluntary conservation agreement to provide habitat for the monarch butterfly. The effort is unprecedented in terms of its cross-sector participation and geographic extent. The agreement spans the entire contiguous 48 states and is helping agencies and companies transform their vegetation management to benefit wildlife in need. Learn more at rightofway.erc.uic.edu/national-monarch-ccaa/.

About the University of Illinois Chicago Sustainable Landscapes Program

The University of Illinois Chicago (UIC) Energy Resources Center is home to the Sustainable Landscapes Program and the Rights-of-Way as Habitat Working Group, which convenes people at the intersection of biodiversity and infrastructure.


[1] Pollinator habitat near soybean fields was found to have a positive effect on insect visitation and soybean yield. See Levenson et al. 2022, doi.org/10.1016/j.agee.2022.107901, and Garibaldi et al. 2021, doi.org/10.1016/j.tree.2021.03.013.

[2] Read more at energy.gov/sites/default/files/2021-09/Solar%20Futures%20Study.pdf.

[3] Read more at worldwildlife.org/stories/eastern-migratory-monarch-butterfly-populations-decrease-by-59-in-2024.

[4] Check out our online map of native seed vendors and specialists at: rightofway.erc.uic.edu/resources/seed-expert-map/.

[5] See Walston et al. 2024, iopscience.iop.org/article/10.1088/1748-9326/ad0f72; Levenson et al. 2022, doi.org/10.1016/j.agee.2022.107901; and Garibaldi et al. 2021, doi.org/10.1016/j.tree.2021.03.013.

[6] From injuryfacts.nsc.org/all-injuries/preventable-death-overview/odds-of-dying/.

[7] See Thogmartin et al. 2017, https://iopscience.iop.org/article/10.1088/1748-9326/aa7637

[8] See rightofway.erc.uic.edu/working-group-access/monarchccaatoolkit.

Savion’s Utility-Scale Agrisolar Project in Ohio Now Operational 

“Savion, a Shell Group portfolio company, announced that the Madison Fields Solar Project (MFSP) has achieved commercial operation. The 180 MW solar power plant is located in Madison County, Ohio, and is one of the first operating utility-scale solar sites to intentionally integrate soybeans, alfalfa and forage crop production within the array. 

Over the next 35 to 40 years, the solar plant is expected to produce enough energy to power approximately 38,000 Ohio homes annually. The project will connect to the regional power grid controlled by PJM and is expected to contribute $1.62 million annually to local taxing entities throughout the life of the project, according to Savion.” – PV Magazine  

Sheep Graze Under Solar Panels in Minnesota 

“In rural Chisago County, clippers buzz and wool falls like snow as a flock of about 100 sheep gets a haircut. These animals, owned by Cannon Valley Graziers, aren’t on a sheep farm. Freed from the pen, several ewes congregate under nearby solar arrays, chomping away at weeds and grass. U.S. Solar, which owns multiple sites, contracts with Cannon Valley Graziers to keep the land tidy. This is solar grazing: the practice of using sheep to manage the vegetation on large-scale solar sites.” – mprnews.org 

Solar Panels Benefit Crops in Arizona Amidst Dry Season 

“For 31 straight days last summer, temperatures in Phoenix hit or topped 110 degrees, the longest such streak ever. Searing Arizona heat dehydrates crops and evaporates water the state needs to conserve. Creating shade is one way to combat the problem.  

By using solar panels, farmers can simultaneously protect their plants, save water and lower their energy bills – and some are doing just that with help from federal programs designed to encourage this sustainable method of growing. Photovoltaic panels are placed above the crops, harnessing the sun’s energy while providing valuable shade.” – juancole.com  

This content is password protected. To view it please enter your password below:

Across the country, farmers, landowners, researchers, and solar companies are working together to harvest the sun twice: once with crops, honey, pollinators, and forage for grazing animals, and again with solar panels. This co-location of solar and agriculture is known as agrisolar or agrivoltaics. In Harvesting the Sun, the leading voices of the agrivoltaic movement come together to share their stories and shine a light on a climate solution that can increase farm profitability, save valuable water, improve the soil, provide shade for farm workers, develop valuable ecosystem services, and increase the resiliency of rural communities. 

If you would like to contribute to NCAT’s development of an Agrisolar Center to continue this work, contact us at agrisolar@ncat.org.

By Savannah Crichton, University of Alaska Fairbanks 

Southcentral Alaska is home to the state’s first agrivoltaics project, a study that aims to uncover the best practices for harvesting from both land and sun. The research team will monitor both farmed crops and native berry plants that grow between the rows of panels at an operational solar PV array.  The solar array is situated in the Matanuska-Susitna Valley, where the majority of Alaska’s farmland is located.  

The project, Agrivoltaics: Unlocking Mid-Market Solar in Rural Northern Climates, is a three-year project funded by the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO).  

In 2023, solar developer and project partner Renewable IPP (RIPP) built an 8.5-megawatt solar array in Houston, Alaska, which was financed by diversified clean energy company, CleanCapital. This array is classified as mid-market solar–the middle ground between commercial solar projects and large-scale (>100MW+) utility solar. RIPP sells the electricity produced at this site to Matanuska Electric Association, the regional utility.  

Ribbon cutting at the solar array in Houston, Alaska. 

At northern latitudes, the sun hits the earth at a lower angle, causing solar panels to shade each other during sunrises and sunsets. To maximize energy production and avoid shading, solar developers may increase row spacing. With intentional design and wider rows, there’s ample land open between these rows for foraging or farming. 

The new Houston array is situated on a berry stand well known to local berry pickers. Drawing from their previous solar farm development experience, RIPP intentionally found a way to minimize the environmental impact of solar construction and increase community acceptance by maintaining as much of the native vegetation as possible. Some of the boreal species growing onsite include willow, alder, birch, moss, fireweed, labrador tea, bog blueberry, and lingonberry. The latter two are edible berry species that carry meaningful value to Alaska Native cultures and are prized by many in Alaska’s summer months.  

Instead of aggressive clearing methods that level land and remove certain ecological services, a low-mulching protocol was used to preserve topsoil and low-growing woody shrubs. Native low-growing species, like berries, can continue to grow and sequester carbon. If nutrient-rich soil is left intact, solar developers leave options open for the development of agrivoltaic applications to co-locate their array with food production.  

Blueberry bushes growing on the solar site. 

That’s exactly what a team of researchers at UAF from the Alaska Center for Energy and Power (ACEP) and the Institute of Agriculture, Natural Resources and Extension (IANRE) intend to study. UAF is one of six projects funded under the Foundational Agrivoltaic Research for Megawatt Scale (FARMS) program to conduct research on agrivoltaic opportunity for their communities.  

Principal Investigator Christopher Pike from ACEP and co-investigators Glenna Gannon and Jessie Young-Robertson pulled together an interdisciplinary team of engineers, farmers, and solar experts. The research team is joined by Alaska Pacific University (APU) Spring Creek Farm Manager and project co-investigator Benjamin Swimm,and RIPP founders Jenn Miller and Chris Colbert.  

Under the mission to bolster food and energy security, the team will measure both solar PV production and physiological health of crops over two growing seasons, develop a techno-economic analysis to guide future mid-market solar PV and agriculture projects, and connect with the community through educational programming.  

CEO and Manager of Renewable IPP Jenn Miller speaks to crowd at the solar farm. 

In the first few months of the project, the team compiled a diverse stakeholder pool of northern and Alaska-based landowners, farmers, utilities, solar developers, tribal organizations, academic researchers, and environmental agencies. Through individual outreach, team networks, and local events, over 200 people signed up to participate in a stakeholder needs assessment survey.  

The survey was distributed to evaluate stakeholder perspectives towards agrivoltaics in rural northern contexts. In addition to this data, the team will conduct a techno-economic analysis to understand the economic conditions in Alaska that may create hurdles or opportunities for those interested in developing agrivoltaic systems.  

The contributions from the stakeholder survey and follow-up interviews will inform the project’s agricultural research plans and economic analysis. Broadly, this input helps the team understand community acceptance and potential adoption of multi-use solar farms while also adding color to the picture of food and energy security in rural, northern regions.  

Preparation of the agricultural research plots at the Houston array will begin in summer 2024. The acidic silt loam soil will be amended with lime and compost in plot locations to make them more amenable to agricultural growth.  

With the soils tilled, planting will begin in summer 2025. A combination of popular commercial vegetables and animal forage crops will be planted and monitored throughout the growing season for their productivity both inside and outside the solar array.  

Crops at northern latitudes undergo unique challenges, like cool growing seasons and high solar radiation loads. Because of these unique conditions, some crops grown under solar PV arrays may experience improved productivity, while other crops that are usually productive in the rural north may not perform as well.  

Gannon, Young-Robertson, and ACEP research professional Savannah Crichton will coordinate the collection of plant physiology data of the agricultural crops, as well as the existing blueberry and lingonberry plants. Leaf-level physiological measurements of photosynthesis, transpiration, water use, and stress help define the dimensions of health in plants. These measurements will allow the team to understand the impact that fixed solar modules and increased shade have on the plants’ overall health, crop yield, and produce quality.

Close-up of the blueberries growing on-site.

Likewise, Pike and ACEP research engineer Henry Toal will monitor the solar power production and gauge the impact of farming activities on the array’s operation and maintenance costs. Weaving together qualitative, economic, physiological, and electrical data will allow the team to evaluate the feasibility of agrivoltaic systems in the north.  

Rural households in Alaska spend nearly 27% of their annual income on energy expenses, and around 95% of Alaska’s non-subsistence food supply is imported. If an agrivoltaic model works in Alaska, it could be a major breakthrough for increasing food and energy security in the state. The impacts of this research have significant potential value, not just for solar developers and farmers, but for entire communities.  

If you’d like to learn more about the project, visit our website or email Savannah at sgcrichton@alaska.edu.  

The research is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (SETO) Award # DE-EE0010442. 

Farmers Across America Chase Stable Returns 

Farmers are increasingly embracing solar as a buffer against volatile crop prices and rising expenses. Their incomes are heading for a 26% slide this year, the biggest drop since 2006, as cash receipts for corn, soy and sugar cane are expected to drop by double-digit percentages.  

The shift is a big part of the renewables push in the US: The American Farmland Trust estimates that 83% of expected future solar development will take place on agricultural soil.” – bloomberg.com 

Agrisolar Market Forecast to be Worth $10.64 Billion by 2033 

“The Brainy Insights estimates that the USD 2.98 billion Agrivoltaics market will reach USD 10.64 billion by 2033. Increased government initiatives to boost R&D in agrivoltaics is one major factor that may create lucrative opportunities for agrivoltaics devices in the market. Governments across the globe have undergone tremendous initiatives to boost investments and increase subsidies in the market. To achieve net-zero carbon emissions the government across the globe is undergoing a renewable fuel-based economy.” – finance.yahoo.com 

US Farms with Solar Have Tripled Since 2013 

“Solar panels are gaining popularity across U.S. fields. In fact, there are now three times as many farms with solar installations compared to 2012. 

In 2012, a little more than 36,000 U.S. farms had them installed. By 2017, that number had jumped to more than 90,000. In 2022, it shot up to nearly 120,000. 

Successful Farming found some producers were being offered as much as $1,000 per acre to lease land for solar. While crops can net that much, the panels do not require any input costs like seed and fertilizer.” – rfdtv.com 

In this explainer video, AgriSolar Clearinghouse Director Stacie Peterson offers up five things to know about agrisolar and crops.

In this explainer video, AgriSolar Clearinghouse Director Stacie Peterson offers up five things to know about agrisolar and grazing.

In this explainer video, AgriSolar Clearinghouse Director Stacie Peterson offers up five things to know about agrisolar and pollinator habitat and beekeeping.

his work simulates the behavior of solar irradiance and its interaction with photovoltaic panels and the crop, as well as possible shading, in a photovoltaic plant to study its potential reconversion into an agrivoltaic installation.