Tag Archive for: Pollinators

In this explainer video, AgriSolar Clearinghouse Director Stacie Peterson offers up five things to know about agrisolar and pollinator habitat and beekeeping.

USDA Joins Great Plains Institute and Big River Farms in Minnesota Agrisolar Project 

Officials from the U.S. Department of Agriculture (USDA) joined Great Plains Institute (GPI) and Big River Farms announced GPI and Big River Farms’ ‘Solar Farmland Access for Emerging Farmers’ demonstration projects alongside project partners Connexus Energy and US Solar. As the country and Minnesota both take steps to convert our energy supply to be derived from carbon-free sources, this pilot project is setting out to solve for how solar energy development can be increased while also preserving agricultural land for the people who grow the state and nation’s food.  

Funded by the Mortenson Family Foundation and with additional support from the National Renewable Energy Lab (NREL) and Argonne National Lab, these agrivoltaics projects aim to demonstrate safe and scalable operational practices for electric cooperatives and solar site owners to provide farmland access for emerging farmers inside the fence of solar facilities.” – Globenewswire.com 

AgriSolar Clearinghouse’s Follow the Sun Tour Visits Oregon 

The AgriSolar Clearinghouse’s Follow the Sun Tour visited the North Willamette Research and Extension Center in Aurora, Oregon, on September 18, 2023. The research center hosts an agrivoltaic project, where the University of Oregon studies combining crops and solar energy on the same parcel of land. Event attendees participated in a tour of the agrivoltaic site, guided by lead researcher Dr. Chad Higgins. After the tour, everyone enjoyed a lunch and round-table discussion in the conference room of the facility.  

The research conducted at the facility includes showing that solar arrays could be used as resources for plant productivity and that solar panels on agricultural lands maximizes their efficiency. Attendees discussed details related to these studies during the tour, which also included financial questions and scalability. 

Blue Wave in MA Secures $91 Million for Agrisolar Development 

“Northeast U.S. solar developer and operator BlueWave received $91 million in financing, which the company says will allow it to achieve long-term ownership and management of its portfolio of projects. 

The financing will go toward the construction of five projects featuring dual-use solar development attributes, called agrivoltaics, in Massachusetts. These projects are “strategically implemented to benefit all parties impacted by the projects,” including landowners, farmers and the surrounding community, according to BlueWave. The financing includes a $64 million debt raise with KeyBank, and $27 million tax equity raise with U.S. Bancorp Impact Finance.”– PV Magazine  

Wisconsin Bill Introduces the Protecting Future Farmland Act 

“U.S. Senators Tammy Baldwin (D-WI) and Chuck Grassley (R-IA) introduced the Protecting Future Farmland Act, new legislation to support farmers’ land stewardship efforts as many choose to deploy solar energy on their land. The legislation will ensure that federal investment in rural energy projects prioritizes both land stewardship and responsible deployment of renewable energy to protect America’s farmlands for future cultivation.” Senate.gov 

This report updates readers on new research in dual-use solar and explores important considerations for the implementation of dual-use solar in the Pacific Northwest region. In the last few years, new findings suggest there are many environmental and economic benefits of creating multi functional systems that combine and prioritize multiple land uses. New research of dual-use solar facilities shows increased yields in some crops and decreased water needs; benefits to grazing animals such as decreased heat stress; improved ecosystem services such as better water quality, erosion control, carbon storage, and pollination services; and further opportunities for dual-use implementation.

This episode features a conversation between Stacie Peterson, NCAT’s Energy Program Director and Manager of the AgriSolar Clearinghouse, and Pete Berthelsen, Executive Director of The Bee and Butterfly Habitat Fund and President of Conservation Blueprint. 

It is the fourth in a series of AgriSolar Clearinghouse podcasts that are being featured on ATTRA’S Voices from the Field podcast.  

Pete and Stacie discuss the benefits of pollinator habitat at solar energy sites, pollinator habitat design, seed mixes, pollinator health and quality, and what anyone can do to help pollinators in their own backyard. 

AgriSolar Clearinghouse Resources: 

Other Resources: 

Contact Stacie Peterson at stacieb@ncat.org.   

Please complete a brief survey to let us know your thoughts about the content of this podcast.   

You can get in touch with NCAT/ATTRA specialists and find access to our trusted, practical sustainable-agriculture publications, webinars, videos, and other resources at ATTRA.NCAT.ORG.   

Learn about NCAT’s other innovative sustainable agriculture programs.   

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE000937. Legal Disclaimer: The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.  

In this article, researchers propose 19 directly measurable indicators associated with 16 ecosystem services within three major stocks of natural capital (biodiversity, soil and water) that are most likely to be impacted by the development of solar parks.

Agrisolar Clearinghouse Hosts Farm to Table Event at Biosphere 2  

The AgriSolar Clearinghouse held an AgriSolar Farm to Table event  at Biosphere 2 in Tucson, Arizona, last week, in partnership with the GreenBiz23 conference. Similar to the AgriSolar Clearinghouse Follow the Sun field trips, the AgriSolar Farm to Table events bring members of the agrisolar community together to see, touch, taste, and celebrate the delicious foods grown and grazed at solar farms around the country.

Members of the Agrisolar Clearinghouse, partners and a few others pose for a photo.

The AgriSolar Clearinghouse, along with sponsor Enel North America and partners from Biosphere 2, Connexus Energy, NREL, InSPIRE, Jack’s Solar Garden, and Columbia University, networked with attendees while they enjoyed lunch and refreshments prepared by Chefs Erin, Mateo, and Janos. The menu highlighted foods grown and grazed under solar arrays, including honey, beans, lamb, salad greens, potatoes, and saffron. Discussions ensued amongst attendees while Enel awarded Bare Honey solar-grown honey and the highly coveted agrivoltaic Lego sets.  

Attendees enjoying a solar-grown lunch with live music.

During the lunch, attendees also enjoyed learning about the Biosphere 2’s agrivoltaic project from Dr. Greg Barren-Gafford and graduate students Kai Lepley, Nesrine Rouini, Alyssa Salazar, and Caleb Ortega. Dr. Barren-Gafford provided a background on Biosphere 2, as well as research conducted at the site and its application to agrivoltaics throughout the country. 

Sarah Bendok (right), stands with researcher Nesrine Rouini outside the Biosphere’s agrisolar operation.

Also attending the event was Sarah Bendok, a high-school freshman from Phoenix, Arizonaand founder of Growing Green, a 501(c)(3) nonprofit organization focused on improving agriculture while simultaneously decreasing negative impacts on the environment. Bendok is planning to create an agrivoltaic site at her local community garden and is participating in the AgriSolar Clearinghouse’s peer-to-peer mentoring program under the guidance of Dr. Barron-Gafford and graduate student Nesrine Rouini in pursuit of obtaining the Girl Scout Gold Award.

Attendees arrive at the event outside Biosphere 2.

Thank you to Dr. Barron-Gafford and the Greg Barron-Gafford Research Group; Jesse Puckett; Enel; Rob Davis; Biosphere 2; University of Arizona; Chefs Erin, Mateo, and Janos; the AgriSolar Clearinghouse team; and all the good people that braved the weather to join our agrisolar community in the celebration.  

A happy attendee with some solar-grown refreshments.

More photos from the event can be found here: AgriSolar Farm to Table at Biosphere 2 | Flickr

Sign up for the AgriSolar Extra to be sure you know about upcoming Follow the Sun Tour stops.  

University of Arizona Researchers Awarded $1.2 Million to Explore Agrisolar 

“Researchers will test three different watering strategies, ranging from intensive irrigation to almost no water, and use the shadows cast by solar panels to provide benefits to the agricultural process. The most heavily watered plot will closely replicate current agricultural practices and include plants with greater water needs, like tomatoes and varieties of lettuce. The second plot will involve watering to establish growth, but much less thereafter, to reintroduce native grasses. The final plot will require little to no watering and include ‘climate smart’ plants that have grown for hundreds, if not thousands, of years in the region: prickly pear, agave, legumes and others.” – University of Arizona 

Germany’s Vattenfall Invests in 76-Megawatt Agrisolar Project 

“For the first time, Vattenfall will implement this innovative concept of land use on a commercial scale with partners. The aim of the project in Tützpatz is to combine module types on different mounting systems with suitable agricultural uses over an area of 95 ha, and thus gain further practical experience for future commercial projects of this kind. According to current plans, construction at Tützpatz is scheduled to start in early summer 2023.” a– Reve 

Written for the AgriSolar Clearinghouse by Center for Rural Affairs


DOE Solar Energy Technologies Office Announces $8 Million in Projects for Agrivoltaics Research 

The U.S. Department of Energy (DOE) Solar Energy Technologies Office announced $8 million in new projects that will research agrivoltaics—agricultural production, such as crop production, livestock grazing, and pollinator habitat underneath solar panels and/or in between rows of solar panels. 

The Foundational Agrivoltaic Research for Megawatt Scale (FARMS) funding program will advance agrivoltaics practices and show how it can provide new economic opportunities to farmers, rural communities, and the solar industry. They explore different ways to implement agrivoltaics that will address concerns from the solar industry and farmers. Currently, less than 2% of solar systems utilize agrivoltaic practices.” – Energy.gov  

AgriSolar Clearinghouse partner Greg-Barren Gafford from The University of Arizona is among the award recipients. Learn more about award recipients, which also include Rutgers and Ohio State University, here.  

USDA Announces Climate Smart Commodity Awards 

USDA Announced 71 climate-smart commodity awards in round 2 of the initiative. Among the awardees is The University of Texas Rio Grande Valley (UT-RGV), with the project “Validating Agrivoltaic Technology with Underserved Agricultural Producers.”  

The AgriSolar Clearinghouse will serve as a technical assistance provider for this project.  This work will include the production of outreach materials, education, and workshops to promote benefits to potential agrivoltaic adopters in the Rio Grande Valley.

JUA Technologies Develops Solar-Powered Dehydrator 

“JUA Technologies, an agriculture technology start-up that manufactures solar-powered crop dehydrators, has received a two-year, $600,000 Phase II Small Business Innovation Research (SBIR) grant from the U.S. Department of Agriculture (USDA) to develop its technology.” – PV Magazine 

Italian Research Shows Benefits of Growing Soybeans Using Agrivoltaics

“Scientists from Università Cattolica del Sacro Cuore in Italy have investigated different shade depth treatments on soybeans grown under an elevated agrivoltaic system in Monticelli d’Ongina, Italy. ‘Our work confirmed that soybean is shade tolerant and can be grown in combination with solar power generation. Considering not only soy but more crops and extensive crops in a large scale agrivoltaics is useful for increasing the sustainability of the agrivoltaic system itself.’ researcher Eleonora Potenza told PV magazine. – PV Magazine

Meta Obtains 720MW of Solar from Silicon Ranch

“Facebook owner Meta Platforms will power additional data center operations around the Southeast with 720 MW of new solar developments in Georgia and Tennessee with Silicon Ranch. Silicon Ranch is partnering with the Walton Electric Membership Corporation and the Tennessee Valley Authority (TVA) to supply power from seven new solar facilities to power Meta’s data centers in the two Southeast states, respectively.” – PV Magazine

Written for the AgriSolar Clearinghouse by Center for Rural Affairs


Lake Pulaski is an agrivoltaic solar power plant site developed by Enel Green Power that spans over 68.2 acres in Buffalo, Minnesota. This site is one of 16 developed for the Aurora Distributed Solar LLC project in 2017, supporting pollinators, grazing, and an apiary. The layout consists of 34,668 panels at 315 watts each, spanning over 500 individual arrays. The total plant system size is 10.92MW (dc). Each panel has a SolTech single, horizontal axis tracker to follow the sun path and optimize production. This tracker was chosen over the more standard axis-pole trackers due to their ability to allow curves in the array installation to accommodate the rolling landscape. The developers strived to install the system with minimal land disturbance to maintain the landscape and reduce excavation, thus allowing the panels to move with the rolling hills. Panel height was design to be approximately 2.5 fee from the ground at the maximum tilt angle of 45o to allow grazing sheep to pass under without harm to sheep or panels. This sets the total height of each array at a maximum of 10 feet.

Showing how the panel height is appropriate to allow for sheep to graze under panels.
Solar tracking system with grazing sheep

The landscape is grazed once a year near the end of September for one month to reduce the need for mowing, save on labor and gas, and maintain a healthy soil chemistry. Graduate students at Temple University in Pennsylvania are conducting studies on the benefits of grazing, such as soil composition, a reduced mowing, and a reduction in spraying for weeds. Eight of the 16 Aurora project sites are grazed for research purposes. Occasional mowing is required if the area has a high-growth year. Minnesota Native Landscapes (MNL) developed the original native seed profile to help promote pollinator activity under the panels. The final seeding was completed by Westwood Professional Services. MNL also maintains the pollinator and native landscape. Bare-grounded spraying is used to kill off unwanted invasive species, such as thistle. These areas are then fenced off to prevent wildlife and sheep in the area. Soil samples are taken from sprayed and mowed areas for research. Lake Pulaski also promotes the bee population by allowing bee farmers to move their hives next to the site to help pollinate the area and grow healthier bees.

Dustin Vanesse from Bare Honey holds up a hive panel covered in honey bees.

Lake Pulaski is not without maintenance needs. The enormity and complexity of the site requires technicians, plant experts, landscapers, and sheep farmers to ensure that the site function as designed. Enel Green Power does most of the technical maintenance, while MNL sprays and maintains the plants. The SolTech trackers require slightly more maintenance than pole trackers, and they can go offline due to storms, sheep knocking the sensors, and other natural causes. Background research is being conducted by ENEL to determine whether the tracking system is worth the extra maintenance. At the end of the site’s service life, which is typically 25 years, the developers hope to decommission the system and return the land to agriculture with richer soil than the gravel alternative and unharmed adjacent landscapes. The research from this site will help quantify the benefits that agrivoltaics can bring to both solar development and agriculture industries.