Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. Land use change for land-based renewables (LBR) is global, widespread and predicted to increase. Understanding of microclimatic effects is growing, but currently incomplete, and subsequent effects on plant–soil C cycling, greenhouse gas (GHG) emissions and soil C stocks are unknown. We urge the scientific community to embrace this research area and work across disciplines, including plant–soil ecology, terrestrial biogeochemistry and atmospheric science, to ensure we are on the path to truly sustainable energy provision.

Implications for vegetation growth when large opaque objects such as solar collectors are placed between the sun and ground-level vegetation across large portions of earth surface have received little attention to date. The present study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established and thrive.

This report explores how the bifacial PV (biPV) technology can be optimized for various crops in fixed tilt and single-axis tracking AV systems.

Solar photovoltaic (PV) technology is being deployed at an unprecedented rate. To this end, we investigated critical soil physical and chemical parameters at a revegetated photovoltaic array and an adjacent reference grassland in Colorado, United States.

Renewable energy is a promising alternative to fossil fuel based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, the researchers review direct and indirect environmental impacts both beneficial and adverse of utility scale solar energy (USSE) development, including impacts on biodiversity, land use and land cover change, soils, water resources, and human health. Additionally, they review feedbacks between USSE infrastructure and land atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change. Utility scale solar energy systems are on the rise worldwide, an expansion fueled by technological advances, policy changes, and the urgent need to reduce both our dependence on carbon intensive sources of energy and the emission of greenhouse gases to the atmosphere. Recently, a growing interest among scientists, solar energy developers, land managers, and policy makers to understand the environmental impacts both beneficial and adverse of USSE, from local to global scales, has engendered novel research and findings. This review synthesizes this body of knowledge, which conceptually spans numerous disciplines and crosses multiple interdisciplinary boundaries. The disadvantageous environmental impacts of USSE have not heretofore been carefully evaluated nor weighted against the numerous environmental benefits particularly in mitigating climate change and co benefits that solar energy systems offer. Indeed, several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewable energy technologies. Major challenges to the widespread deployment of USSE installations remain in technology, research, and policy. Overcoming such challenges, high lighted in the previous sections, will require multidisciplinary approaches, perspectives, and collaborations. This review serves to induce communication across relatively disparate disciplines but intentional and structured coordination will be required to further advance the state of knowledge and maximize the environmental benefits of solar energy systems at the utility scale.

Threats to pollinators may have profound consequences for ecosystem health as well as our food systems. Concerns about pollinator declines and associated repercussions have led to increased efforts by non-governmental organizations and both public and private sectors to reduce threats to pollinators. One of the most iconic pollinator species, the monarch butterfly (Danaus plexippus plexippus), is recognized and celebrated by people throughout North America; the butterfly’s annual migration stretches from southern Canada to Mexico, covering most of the lower 48 United States during the spring and summer. But monarchs are in trouble. The overwintering population in central Mexico has declined by ~80% since the 1990s. The overwintering population in coastal California has declined by 97% since the 1980s and, in winter of 2018–2019, the population crashed to a mere 0.6% of its historic size. Threatened by habitat loss, insecticides and herbicides, climate change, and other stressors, the species is now being considered for listing under the U.S. Endangered Species Act. Contributions to species conservation efforts can therefore be investments toward helping a species rebound and averting a listing. Electric power companies have an opportunity to play a part in the monarch’s recovery. They own and/or manage a substantial amount of land and associated natural resources across North America, including transmission and distribution rights-of-way (ROW), solar fields, wind fields, buffer areas surrounding power plants and substations, and “surplus” land holdings. These acres hold the potential to create a network of habitat to support monarchs and other pollinators across their breeding range. Together, power companies have an opportunity to make a difference by considering the needs of these important animals when managing habitat and revegetating land.