Tag Archive for: soil health

Cannon Valley Graziers is a vegetation-management company based in Southeastern Minnesota. Since 2018, Arlo Hark and Josephine Trople have been using their flock of sheep to manage vegetation in a variety of environments, working closely with customers to meet their management goals. Cannon Valley Graziers provides vegetation-management services for solar developers throughout southern Minnesota. The vegetation on community and utility solar sites is traditionally mowed multiple times per year, incurring high operations/maintenance costs. By applying adaptive-grazing strategies on these solar sites, Cannon Valley Graziers can reduce the annual maintenance costs for developers, while also having a positive impact on the soil health and water quality of southern Minnesota. 

Photo Courtesy of Cannon Valley Graziers

The principles of adaptive grazing are well-suited for vegetation management. By mob grazing—introducing a large number of sheep into a small area for a short amount of time—Hark is able to deploy his flock with surgical precision to meet the needs of each site. After the desired objectives are met, he moves the flock to the next site. Meanwhile, the vegetation is allowed to recover, strengthen its root systems, and grow more resilient. Hark says these root systems are key for soil regeneration and water quality. Deeper roots build organic matter and allow for the transfer of minerals deeper into the soil. Strong root systems also improve the soil’s ability to store and maintain water, which reduces soil erosion and chemical runoff into nearby waterways. 

Photo Courtesy of Cannon Valley Graziers

Growing a sheep-powered vegetation-management company is not without challenges. Large flocks require large trucks and trailers to move from site to site. In addition, most sites do not have water, so water must be supplied by the grazier. But to Hark, the effort is worth it. “It makes sense to stack benefits on these sites,” he explains. “We are providing a top-notch service to our customers, improving soil and water quality, and providing meat and fiber to our community. It just makes sense.”

Written By: Amanda Gersoff (M.Sc. student), Dr. Seeta Sistla

Natural Resources Management and Environmental Sciences Department, Cal Poly, San Luis Obispo

Our team is studying the ecological aspects of utility-scale solar arrays set on former agricultural land whose understory is maintained by sheep grazing. By gaining a better understanding of the ecological implications associated with panel shading coupled with grazing by sheep, we hope to develop insights into agrivoltaic development that can maximize positive environmental effects while reducing negative externalities. We are currently focusing on two utility-scale solar energy sites located in San Luis Obispo County, California. At these sites, we conduct weekly monitoring to measure surface microclimatic features, soil nutrient cycling processes, and plant community composition.

Collecting soil cores at Topaz Solar Farm. Photo: Amanda Gersoff
Collecting aboveground biomass samples at Topaz Solar Farm. Photo: Amanda Gersoff

We hypothesized that the novel shading caused by the arrays will affect plant and soil dynamics, including decomposition, biomass production, plant moisture content, the timing of plant community events (like flowering duration and time to senescence) and plant nutrient content. Our work has suggested that placing arrays in arid grazing landscapes that are emblematic of the western U.S. can confer synergistic benefits for the plant community and their grazers. For example, our work has found that the plant mass beneath the array rows has high water content, greater nitrogen content (correlated with higher soil plant-available nitrogen), and lower non-digestible fiber content than areas that are grazed but outside the arrays’ direct shading influence. We are currently tracking phenological patterns of greenness and flowering time/duration in the array, to better understand if the traits we are observing correlate with an extension of the growing season for the community with the array’s shading area.

Over the next year, we will continue monitoring to gain a more comprehensive understanding of how exactly spatial heterogeneity created by panel shading influences ecological systems. At both sites, the practice of solar grazing, in which sheep are used to maintain vegetation under solar panels, has been implemented. By combining agricultural and renewable energy production, also known as agrivoltaics, multiple benefits can be realized. Utilizing rotational grazing by sheep is beneficial because it can reduce the costs of mowing and maintenance, support local shepherds, cultivate biodiversity, cycle nutrients into the soil, and decrease the risk of sparks igniting dried grasses. As utility-scale solar energy grows, it is important to look to dual-use solar for increasing efficiency and maximizing environmental benefits.

Rotational grazing by sheep at Goldtree Solar Farm. Photo: Amanda Gersoff
Patterns of phenological differences  vegetation due to shading at Topaz Solar Farm.  Photo: Amanda Gersoff
Owl’s clover (Castilleja exserta): An annual native wildflower common in the rows adjacent to panels at Topaz solar Farm. Photo: Amanda Gersoff

This is a one-page overview of contour buffer strips, their application, and their effectiveness. 

This paper describes results of crop outputs for certain vegetables with differing gap spaces between rows to determine optimal crop production. It addresses nutrient levels, soil water content, and plant temperature below the panels. 

Solar energy is the fastest growing renewable energy source. It is predicted that 20-29% of global power will be sourced by solar by 2100. Solar energy requires larger land footprints and long-term commitments. Vegetation left under solar panels reduces soil degradation and opens up the potential for solar grazing as a dual income for farmers and vegetation management for solar utilities. Research conducted on multiple solar sites in Minnesota reveal there can be meaningful forage in 45% shade and 80% shade from solar panels. Furthermore, grazing sheep under solar panels produces both a higher content of carbon and nitrogen in the soil. Managed episodic grazing can be used as a strategy for carbon sequestration and vegetation management. Soil properties show an overall improvement and benefits depending on soil properties. Future work must be done to measure the long term soil carbon and hydrological properties.

Increasing energy demands and the drive towards low carbon (C) energy sources has prompted a rapid increase in ground-mounted solar parks across the world. This represents a significant global land use change with implications for the hosting ecosystems that are poorly understood. In order to investigate the effects of a typical solar park on the microclimate and ecosystem processes, we measured soil and air microclimate, vegetation and greenhouse gas emissions for twelve months under photovoltaic (PV) arrays, in gaps between PV arrays and in control areas at a UK solar park sited on species-rich grassland. Our results show that the PV arrays caused seasonal and diurnal variation in air and soil microclimate. Specifically, during the summer we observed cooling, of up to 5.2 °C, and drying under the PV arrays compared with gap and control areas. In contrast, during the winter gap areas were up to 1.7 °C cooler compared with under the PV arrays and control areas. Further, the diurnal variation in both temperature and humidity during the summer was reduced under the PV arrays. We found microclimate and vegetation management explained differences in the above ground plant biomass and species diversity, with both lower under the PV arrays. Photosynthesis and net ecosystem exchange in spring and winter were also lower under the PV arrays, explained by microclimate, soil and vegetation metrics. These data are a starting point to develop understanding of the effects of solar parks in other climates, and provide evidence to support the optimisation of solar park design and management to maximise the delivery of ecosystem services from this growing land use.

Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. Land use change for land-based renewables (LBR) is global, widespread and predicted to increase. Understanding of microclimatic effects is growing, but currently incomplete, and subsequent effects on plant–soil C cycling, greenhouse gas (GHG) emissions and soil C stocks are unknown. We urge the scientific community to embrace this research area and work across disciplines, including plant–soil ecology, terrestrial biogeochemistry and atmospheric science, to ensure we are on the path to truly sustainable energy provision.

This review will discuss the external factors controlling the abundance of rhizosphere microbiota and the impact of crop management practices on soil health and their role in sustainable crop production.

This publication discusses site selection and soil preparation for fruit plantings. It also describes cover crop and mulching options for orchards and vineyard floors, and discusses fertilization and the role of mycorrhizae in maintaining healthy fruit plants. A list of additional resources is included.

In this literature review, the focus is on the most relevant site-specific factors that affect the soil moisture regime, erosion, nitrogen (N) and phosphorus (P) fluxes, and PPP fluxes under undrained and drained conditions.