Tag Archive for: Solar Grazing

This study was conducted to compare lamb growth and pasture production under solar panels and in open pastures in Corvallis, Oregon in spring 2019 and 2020. Results of the study dynamics of variations of shaded areas for rabbit habitat, seasonal herbage and forage production. These results can be useful in developing agrisolar operations that include rabbits.

This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. The discussion dives into a variety of topics, including: reduction of pasture production due to trampling, production in fully shaded areas, herbage variation and its effect on lamb production and lamb behavior relating to water intake and shade usage. These considerations could be helpful for agrisolar development when lambs will be used for grazing, etc.

Written By: Cody Smith

As communities across the nation continue to embrace a future powered by clean energy, new solar farms are offering an opportunity to pair economic development and conservation goals. As landowners, project developers, and local officials work to enhance the value of these new project sites for the communities hosting them, investments in native vegetation can open the door for a variety of opportunities to grow the local economy while simultaneously promoting clean water, soil health, and wildlife habitat.

Solar energy is rapidly expanding in many states as utilities and consumers seek cheaper, cleaner alternatives to meet their needs. In fact, in 2020 the utility-scale solar industry grew by 26%, fueling the rise of renewables to be the second most prevalent source of electricity generation in the U.S. that year. With increased solar deployment, many communities are enjoying new jobs and tax revenue. In fact, across the Midwest, the solar industry employed nearly 37,000 workers as of 2019.

Source: Amplifying Clean Energy with Conservation: Part One: Pollinator-Friendly Solar. Center for Rural Affairs.

As more project sites are selected and leases are negotiated between landowners and project developers, prioritizing these investments can ensure that these new sites add value to all stakeholders in the process. Investments in native vegetation have been shown to increase the populations of pollinating insects, such as honey bees and native bees, by as much as three and a half times more than sites without such investments, according to the Iowa State University STRIPS Project. Meanwhile, vulnerable birds, such as the sedge wren in the Midwest, can utilize these new investments as much-needed habitat, helping protect wildlife biodiversity.

Well-maintained native vegetation is also an effective practice for improving water quality. Even modest investments in perennial native vegetation have demonstrated a 60 percent reduction in nitrogen loss and a 90 percent reduction in phosphorus loss to surrounding lakes, rivers, and streams. Retaining those nutrients on-site helps prevent the damaging impacts of harmful algal blooms in the watershed and improves overall soil health.

A common concern among landowners and residents debating whether or not utility-scale solar is a good fit for their community is the loss of productive agricultural land for this purpose. Local officials and developers should not stray away from these challenging conversations, though it is important to highlight these sites as an opportunity to continue agricultural production, even if it looks different than a traditional crop rotation of corn and soybeans. By introducing livestock grazing with a robust rotational grazing plan, farmers can both continue to diversify their incomes and grow the local economy without minimizing the positive environmental impacts described above.

In all, investments in native vegetation on solar project sites have shown they can both complement economic development goals and improve environmental conditions for the surrounding community, adding significant value to the projects. As developers, local officials, and landowners continue to contemplate whether or not pollinator-friendly solar is a good fit for them, this webinar titled Native Vegetation + Solar Energy from the Center for Rural Affairs can serve as a resource for planning for, managing, and implementing these types of projects.

By Heidi Kolbeck-Urlacher, Senior Policy Associate, Center for Rural Affairs 

On a chilly September afternoon, a flock of Targhee/Rambouillet cross sheep quietly wander the grounds of an 18-acre solar garden site in southwestern Minnesota. The sheep are fulfilling a duty known as solar grazing, which uses livestock to manage vegetation at solar sites. 

Replacing traditional mowing, solar grazing offers numerous environmental and financial benefits. 

“Environmentally, you’re allowing a diverse plant community to grow, which increases soil health over time, reduces erosion, and increases pollinator habitat,” said Audrey Lomax, manager of the solar grazing program at Minnesota Native Landscapes. “Economically, farmers can supplement their income and grow their business, and developers see a cost savings as they spend less over time to manage the sites.” 

The rapid growth of the solar energy industry means more acres of land will be needed to host these projects. 

“Whether people like solar or not, it’s a rapidly growing reality, and the land that is used must be managed,” said Trent Hendricks, who operates Cabriejo Ranch in West Plains, Missouri, and provides regenerative grazing services to utility-scale solar farms. “Grazing provides numerous benefits that can’t be realized through paving or mowing. This includes carbon sequestration, increasing biodiversity, providing habitat for wildlife like ground-nesting birds, and keeping land in agricultural use by supporting lamb production.” 

The sheep at the site are owned by Matt Brehmer, a beginning farmer from Brookings, South Dakota. Matt recently bought a farm and purchased livestock a year ago. His pasture won’t support both cows and sheep, so working as a solar grazier gives him additional pasture opportunities and helps support his business. 

“I heard about solar grazing from another farmer who was doing it,” Matt said. “After trying it for a season, I plan to do it again and would recommend it to others.” 

Audrey said solar grazing is something more farmers should consider. 

“This is a high-value service that can allow farmers to grow their business, and even their flock, without land,” she said. “This is especially true for beginning farmers who often don’t have infrastructural support or access to land.” 

As the solar industry continues to grow, practices like solar grazing can play an important role in ensuring clean energy, environmental, and agricultural goals can be achieved together. Some states, such as Massachusetts and New Jersey, have created policies to incentivize the dual-use of solar with agriculture. 

“If we are going to promote solar as an energy solution, we have a responsibility to also ensure good land management,” Trent said. “With grazing, we can keep animals on the land and keep it in food production.” 

A recent episode of ATTRA Sustainable Agriculture podcast Voices from the Field takes a look at solar grazing, the practice of using livestock to manage the vegetation under solar panels. Sheep are widely considered the best animal for solar grazing, and they are being used in many countries with great success.

National Center for Appropriate Technology Livestock Specialist Linda Coffey talks with Lexie Hain, a co-founder of the American Solar Grazing Association. Lexie, who began grazing sheep at solar arrays in 2016, talks about how she began solar grazing and offers practical tips for anyone who is considering the practice.

With agricultural land in high demand and requirements to expand renewable energy, using land for agriculture and energy at the same time is better for the environment, the solar company, the farmers, and the sheep.

ATTRA Resources:

Other Resources:

This podcast is produced by the National Center for Appropriate Technology through the ATTRA Sustainable Agriculture program, under a cooperative agreement with USDA Rural Development. ATTRA.NCAT.ORG.  

Farm Energy Efficiency