Agrisolar Clearinghouse Icon

Berkeley Lab’s annual Utility-Scale Solar report presents trends in deployment, technology, capital expenditures (CapEx), operating expenses (OpEx), capacity factors, the levelized cost of solar energy (LCOE), power purchase agreement (PPA) prices, and wholesale market value among the fleet of utility-scale photovoltaic (PV) systems in the United States (where “utility-scale” is defined as any ground-mounted project larger than 5 MWAC). This summary briefing highlights key trends from the latest edition of the report, covering data on projects built through year-end 2020. Median installed project costs have steadily fallen by nearly 75% (averaging 12% annually) since 2010, to $1.4/WAC ($1.1/WDC) among 68 utility-scale PV plants (totaling 5.1 GWAC) completed in 2020 (Figure 3). Costs were lowest in the Southeast ($1.2/WAC or $0.9/WDC) and highest in CAISO. Projects that use single-axis tracking have slightly higher up-front costs than fixed-tilt projects, but the difference has narrowed over time, particularly since 2015. Looking ahead, the amount of utility-scale solar—and solar+storage—capacity in the development pipeline suggests continued momentum and a significant expansion of the industry in future years. At the end of 2020, there were at least 460 GW of utility-scale solar power capacity within the interconnection queues across the nation, 170 GW of which first entered the queues in 2020. Nearly 160 GW of the 460 GW total (i.e., 34% of all solar in the queues) include batteries. Solar (both standalone and in hybrid form, including batteries) is by far the largest resource within these queues, roughly equal to the amount of wind, storage, and natural gas combined. The growth of solar within these queues is widely distributed across almost all regions of the country, with PJM and the non-ISO West leading the way with nearly 90 GWAC each, followed by ERCOT, MISO, and the non-ISO Southeast, each with ~60 GWAC. Nearly 90% of the solar capacity in CAISO’s queue at the end of 2020 was paired with a battery; in the non-ISO West, that number is also relatively high, at 67%. Though not all of these projects will ultimately be built as planned (i.e., entering the queues is a necessary but not a sufficient condition for development success), the ongoing influx and widening geographic distribution of both standalone solar and solar+storage projects within these queues is as clear of an indication as any of the accelerating energy transition and the major role that the utility-scale PV sector will continue to play in the years to come.