Entries by Carl Berntsen

Case Study: EDF Renewables Amprior Site Agrisolar

EDF Renewables (EDFR) has dedicated its efforts for over 35 years to create a sustainable energy economy.  They have developed nearly 24 GW and continue to manage nearly 13 GW of wind and solar energy generating projects in North America.  Among these renewable energy sites is the Arnprior solar project located in Ottawa, Ontario, Canada. […]

Watch: Teatime – Leasing for Community and Grid Scale Solar: Key Considerations While Negotiating

In this Teatime from April 21, 2022, Tom Murphy, the Director of Penn State’s Marcellus Center for Outreach and Research (MCOR), presents Leasing for Community and Grid Scale Solar – Key Consideration While Negotiating.  Tom’s current work is as an educational consultant in transitioning to clean energy including utility and community scale solar.   Teatimes are […]

Case Study: Cannon Valley Graziers

Cannon Valley Graziers is a vegetation-management company based in Southeastern Minnesota. Since 2018, Arlo Hark and Josephine Trople have been using their flock of sheep to manage vegetation in a variety of environments, working closely with customers to meet their management goals. Cannon Valley Graziers provides vegetation-management services for solar developers throughout southern Minnesota. The vegetation on […]

,

UV-selective Organic Absorbers for the Cosensitization of Greenhouse-Integrated Dyesensitized Solar Cells: Synthesis and Computational Study

This report discusses the synthesis of four new symmetrical UV-absorbing diimides organic dyes for potential cosensitization process in greenhouse-integrated dye-sensitized solar cells (DSCs). Molecular cosensitization is favorable for manipulating solar radiation through the judicious choice of cosensitizers having complementary absorption spectra. For greenhouse-integrated dye-sensitized solar cells (DSCs), the manipulation of solar radiation is crucial in order to maximize the flow of photosynthetically active radiation (PAR) for the effectual photosynthetic active radiation (PAR) for the effectual photosynthetic activity of plants; meanwhile, non-PAR is utilized in agrivoltaics for generating electricity.

,

Effects of total system head and solar radiation on the techno-economics of PV groundwater pumping irrigation system for sustainable agricultural production

This report discusses the effects of solar radiation and total system head on techno-economics of a PV groundwater pumping irrigation system designed for sustainable agricultural production. The materials and methods of the study include crop water requirements, estimated pumping rates, estimations of PV-array ratings and solar charge controllers, and economic estimations of PV-pumping system(s). The results of the study also include an environmental impact analysis.

, ,

Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use

This research presents a highly transparent concentrator photovoltaic system with solar spectral splitting for dual land use applications. The system includes a freeform lens array and a planar waveguide. Sunlight is first concentrated by the lens array and then reaches a flat waveguide. The dichroic mirror with coated prisms is located at each focused area at the bottom of a planar waveguide to split the sunlight spectrum into two spectral bands. The red and blue light, in which photosynthesis occurs at its maximum, passes through the dichroic mirror and is used for agriculture. The remaining spectrums are reflected at the dichroic mirror with coated prisms and collected by the long solar cell attached at one end of the planar waveguide by total internal reflection. Meanwhile, most of the diffused sunlight is transmitted through the system to the ground for agriculture. The system was designed using the commercial optic simulation software LightTools™ (Synopsys Inc., Mountain View, CA, USA). The results show that the proposed system with 200× concentration can achieve optical efficiency above 82.1% for the transmission of blue and red light, 94.5% for diffused sunlight, which is used for agricultural, and 81.5% optical efficiency for planar waveguides used for power generation. This system is suitable for both high Direct Normal Irradiance (DNI) and low DNI areas to provide light for agriculture and electricity generation at the same time on the same land with high efficiency.

, ,

Modeling the Ecosystem Services of Native Vegetation Management Practices at Solar Energy Facilities in the Midwestern United States

The increasing pressure on land resources for food and energy production along with efforts to maintain natural systems necessitates the development of compatible land uses that maximize the co-benefits of multiple ecosystem services. One such land sharing opportunity is the restoration and management of native grassland vegetation beneath ground-mounted solar energy facilities, which can both protect biodiversity and restore related ecosystem services. In this paper, the researchers applied the InVEST modeling framework to investigate the potential response of four ecosystem services (carbon storage, pollinator supply, sediment retention, and water retention) to native grassland habitat restoration at 30 solar facilities across the Midwest United States. Compared to pre-solar agricultural land uses, solar-native grassland habitat produced a 3-fold increase in pollinator supply and a 65% increase in carbon storage potential. The researchers also observed increases in sediment and water retention of over 95% and 19%, respectively. They applied these results to project the potential benefits of adoption of native grassland management practices in current and future solar energy buildout scenarios. Their study demonstrates how multifunctional land uses in agriculture-dominated landscapes may improve the provision of a variety of ecosystem services and improve the landscape compatibility of renewable energy and food production. These findings may be used to build cooperative relationships between the solar industry and surrounding communities to better integrate solar energy into agricultural landscapes.

, ,

Technoeconomic Model Suggests Scaling-Up Perovskite Quantum Dots for Optoelectronics Warrants Improved Synthesis Yield, Solvent Recycling, and Automation

Colloidal quantum dots (QDs) are nanometer-sized semiconductor crystals grown via low-cost solution processing routes for a wide array of applications encompassing photovoltaics, light-emitting diodes (LEDs), electronics, photodetectors, photocatalysis, lasers, drug delivery, and agriculture. A comprehensive technoeconomic cost analysis of perovskite quantum dot optoelectronics is reported. Using economies-of-scale considerations based on price data from prominent materials suppliers, we have highlighted that increased QD synthesis yield, solvent recycling, and synthesis automation are critical to market adoption of this technology and driving quantum dot film fabrication costs down.

Photosynthetically Active Radiation Decomposition Models for Agrivoltaic Systems Applications

Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well-known to be essential for the prediction of solar photovoltaic systems performance. In open-field agrivoltaic systems, that is the dual use of land for both agricultural activities and solar power conversion, cultivated crops receive an unequal amount of direct, diffuse and reflected photosynthetically active radiation (PAR) depending on the area they are growing due to the non-homogenously shadings caused by the solar panels installed (above the crops or vertically mounted). It is known that PAR is more efficient for canopy photosynthesis under conditions of diffuse PAR than direct PAR per unit of total PAR. For this reason, it is fundamental to estimate the diffuse PAR component in agrivoltaic systems studies to properly predict the crop yield.