Tag Archive for: AgriSolar

January 29, 2024 

Students interested in the creative and holistic design and development of agrivoltaic systems that combine the use of solar photovoltaic power on agricultural lands are being encouraged to “Solve This Challenge” by competing in this year’s Student Design Competition at the 5th Annual Agrivoltaics World Conference. The conference will take place in Denver, Colorado, from June 11-13 this year and will feature a diverse range of topic areas within the field of agrivoltaics from a wide range of industry experts. The conference chairpersons stated that the goal of this conference is to “connect the scientific and non-scientific communities necessary for agrivoltaics to flourish.”

According to the AgriVoltaics 2024 Student Design Competition page, “[t]he AgriVoltaics 2024 Student Design Competition aims to inspire students to think creatively and holistically about energy integration across rural and urban landscapes. The purpose of this competition is to provide students an opportunity to develop innovative agrivoltaic design concepts that address community sustainability challenges across the food-energy-water nexus.” Winning students will be able to present their work to the conference’s international audience, while teams will have the ability to showcase their projects in poster format at the Conference Design Competition Showcase.

The objectives of the competition include innovative integration; food-energy-water-nexus; scalability and adaptability; and social dimensions and community engagement.

Students submissions will be judged by a panel of academic and industry experts from across the globe.

Details on the competition, rules and requirements, judging criteria, and submission guidelines can all be found on the AgriVoltaics 2024 Student Design Competition HeroX page. All submissions must be submitted through the HeroX Platform.

Argonne Study Shows Insect Populations Tripled in Five Years at Agrisolar Sites

“Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and National Renewable Energy Laboratory wanted to understand the ecological value of PV solar energy sites planted with native grasses and wildflowers. They examined how vegetation would establish and how insect communities would respond to the newly established habitat. The five-year field study looked at two solar sites in southern Minnesota operated by Enel Green Power North America. Both sites were built on retired agricultural land.

The two studied solar sites were planted with native grasses and flowering plants in early 2018. From August 2018 through August 2022, the researchers conducted 358 observational surveys for flowering vegetation and insect communities. They evaluated changes in plant and insect abundance and diversity with each visit.” anl.gov

This research study was conducted by AgriSolar Clearinghouse partners as well as Argonne and NREL.

Agrivoltaics Testing on Former Opencast Mine 

“German energy company RWE announced it completed a 3.2 MW agrivoltaic project on a 7-hectare recultivation area on the edge of the Garzweiler opencast mine near Bedburg, a town in the Rhein-Erft-Kreis district of North Rhine-Westphalia, Germany.

The utility said it will test three different agrivoltaic system designs for different crops on both arable and horticultural land at the facility over five years. The aim is to develop suitable management methods and value-adding operating concepts for agrivoltaic systems.” – PV Magazine

New Research Shows Solar Panels Benefit Habitats and Farms

“Argonne researchers have concluded  a five-year study of two agrivoltaic arrays in Minnesota, where the agrivoltiacs movement is particularly strong. They have just published the results of their study in the open access journal Environmental Research Letters.

By the end of the field campaign, the team observed increases for all habitat and biodiversity metrics. There was an increase in native plant species diversity and flower abundance. In addition, the team observed increases in the abundance and diversity of native insect pollinators and agriculturally beneficial insects, which included honeybees, native bees, wasps, hornets, hoverflies, other flies, moths, butterflies and beetles.” – Cleantechnica

Duke’s Florida Solar Farm Now Online 

“Duke Energy is piloting a floating solar farm in Florida – its first – on an existing cooling pond in Polk County.  

The almost 1-megawatt (MW) floating solar array features more than 1,800 solar panels that float on top of two acres of the water’s surface on the pond – which used to be a phosphate mining pit – at the Duke Energy Hines Energy Complex in Bartow, southeast of Lakeland. It provides enough clean electricity to power around 100 local households.” – Electrek 

Vermont Agrivoltaic Project Includes Saffron 

“The foundation for the new agrivoltaic project was laid by saffron expert Arash Ghalehgolabbehbahani of the University of Vermont’s North American Center for Saffron Research and Development, along with researchers Bruce L. Parker and Margaret Skinner. 

The choice of Vermont for this particular project is no accident. Researchers at the University of Vermont have been pitching saffron cultivation as a way to help specialty crop farmers stay in business and preserve cultivated land for future generations. The agrivoltaic program was inspired by the success of a previous saffron cultivation conducted by the school.” Cleantechnica 

Alliant Energy Develops Agrivoltaic Research Project in Iowa 

“A multi-disciplinary team of ISU professors, graduate and undergraduate students is working with Alliant Energy through a public-private partnership to study the potential of agrivoltaics, the simultaneous use of areas of land for both solar panels and agriculture. The team includes horticulturalists, economists, environmentalists, sociologists, engineers and even entomologists. 

The project is the first of its kind. ‘There has been research conducted, but not on a utility scale,’ says Nick Peterson, Strategic Partnerships Manager with Alliant Energy, ‘and not in a public/private partnership with a land grant university.’” – Modernfarmer 

For more than 150 years, Knowlton Family Farms in Grafton, Massachusetts, has been a family-owned operation. It has grown and shrunk over the years, and now it is back in a period of expansion thanks to combining solar-energy production with agriculture.

This video, produced for the National Center for Appropriate Technology’s AgriSolar Clearinghouse, tells the story of how the Knowlton family has been able to reintroduce cattle to their farm for the first time since they sold the last of their dairy cows in 1995. Now cattle graze among the solar panels.

 

Colorado Governor Announces Agrivoltaic Funding  

“Colorado governor Polis and Colorado Department of Agriculture (CDA) Commissioner Kate Greenberg awarded $500,000 in grants to seven projects that demonstrate the use and benefits of agrivoltaics, the simultaneous use of land for solar energy production and agriculture. These grants distributed by the Polis administration will provide funding to incorporate innovative technology that supports Colorado’s producers to operate in the face of challenges created by climate change and prepare the next generation.” –  Colorado.gov 

Sarah Bendok Receives Permit to Build Agrisolar Project in Phoenix 

Sarah Bendok has received the permits by the city of Phoenix required to proceed with constructing a 5-KW agrivoltaic system. The project is expected to cost around $20,000 and is financed through donations from community events, presentations and grants. Sarah is the founder of the non-profit Growing Green, where they help local farmers develop, implement and fund sustainable technologies.  

Learn more about Growing Green here

Agrisolar Benefits Farmlands and Local Economies 

“Smaller residential solar arrays, owned by the landowner, can significantly reduce the electricity bills of a farm, often covering the electricity needs of barns, warehouses, equipment, and the household. 

Michigan State University found that a 10 kilowatt (kW) solar system could save the average farm about $1,880 per year. Other farms, like dairy farms, have a more energy intensive operation and the same 10 kW system could save a dairy farm nearly $4,000 per year. Combined with federal incentives and USDA rural energy programs, farms can save even more on upfront costs. 

Lightsource bp’s Elm Branch and Briar Creek solar projects in Texas delivered two new revenue streams to local farmers. The first was in the form of lease payments. The second was a grazing contract for the farmers’ more than 1,000 sheep. These sheep now control the growth of grass on the site and stay cool under the shade of the panels.” – Cleantechnica 

Agrisolar: The Key to a Clean Energy Future 

“Interest in agrivoltaics is growing, along with the need for land for new solar farms, as Minnesota and the nation shift to cleaner energy. The U.S. Department of Energy estimates 10 million acres of solar panels will be needed by 2050 to meet the nation’s net zero-carbon goals. 

US Solar owns the 1-megawatt Big Lake community solar garden and about 80 more in Minnesota. It’s part of a pilot project encouraging farmers to grow crops or graze livestock between and underneath solar arrays.” – MPR News 

Oil Companies Lightsource and Shell Using Agrisolar  

“Today, the U.S. has about five gigawatts of agrivoltaic projects, encompassing more than 35,000 acres across over 30 different states. While this only represents about 3% of the country’s installed solar capacity, it’s a growing industry, and farmers are taking note. 

Lightsource operates a combined 615 megawatts of sheep grazing and solar power projects, around 12% of the nation’s entire agrivoltaic portfolio. The company plans to add an additional 1,058 megawatts worth of projects next year. Shell is also involved in the space through its 44% stake in solar developer Silicon Ranch. The ranch operates 1,300 megawatts of agrivoltaic projects with an additional 900 megawatts planned over the next two years. 

While there are other players in the domestic agrivoltaic market such as Enel Green Power and US Solar, Lightsource and Silicon Ranch remain the largest players in the space. American oil majors such as Chevron and Exxon haven’t invested in agrivoltaics.” – CNBC 

This article, written by AgriSolar Clearinghouse partners at Argonne National Lab and NREL, discusses the results of a five-year field study to understand how insect communities respond to newly established habitat on solar energy facilities in agricultural landscapes. Researchers found an increase in all habitat and biodiversity metrics, including a rise in abundance and diversity for both flowering plants and insects. Positive effects on the frequency of bee visitation to a nearby soybean field were also recorded. Their observations provide support for solar-pollinator habitat as a feasible conservation practice to safeguard biodiversity and increase food security in agricultural landscapes.

Cantaloupe melons growing between rows of solar panels. 

By Anna Adair, NCAT Energy Program Assistant   

Just south of Portland, Oregon, researchers with Oregon State University (OSU) are putting agrisolar principles to the test at the Oregon Agrivoltaic Research Facility. The site is located at the Noth Willamette Research and Extension Center (NWREC) and serves as host to OSU’s ongoing agrivoltaic research under the leadership of Dr. Chad Higgins. The numerous studies conducted on the site will contribute to advancements in multiple fields, including plant physiology, water usage, and soil health, all while producing power for Oregon citizens through a community solar program.  

While agrivoltaics research has picked up in recent years, a large number of the sites being studied were not originally built with agrisolar pursuits in mind. Although it’s entirely possible to successfully integrate agricultural practices into an existing solar array, using only these sites for research lessens the opportunity to discover agrivoltaic’s full potential. With the Oregon Agrivoltaic Research Facility, Dr. Higgins and OSU flipped the narrative by instead asking: what if a solar site was designed to maximize agricultural production?  

The OSU team felt it was important to approach the project from the perspective of a farmer looking to add panels into their current operations. With that goal in mind, the decision was made to design an array that wouldn’t necessitate the purchase of specialized farming equipment capable of working amongst the panels. Instead, they used NWREC’s current tractor to determine how far apart the bifacial panels needed to be spaced and chose a racking system that can tilt to a vertical position on command.  

A row of dry farmed crops between solar panels. 

Once again approaching the project as a farmer might, Dr. Higgins and his team chose to fund the project through loans, investors, and grants rather than having the university entirely foot the bill. The team partnered with Oregon Clean Power Cooperative (OCPC), who financed the project and maintain ownership over the site. OSU contributed about 5% of the necessary funds, and OCPC’s community investment model provided the framework for local investors to contribute as well. The project also received grants from both Portland General Electric and the Roundhouse Foundation, which provided funding for on-site NWREC staff, research, materials, and construction costs. OSU anticipates the project will pay for itself in about 10 years.  

In addition to providing space for agrisolar research, the site also serves as a community solar operation with Oregon Clean Power Cooperative. OCPC was heavily involved in the project from the beginning, working with Dr. Higgins to design the system and purchase the equipment in the midst of a supply chain crisis during the pandemic. Thanks to the dedication of both parties, construction on the 5-acre, 320-kW site wrapped up in the fall of 2022, and it began producing power the following April. The site is OCPC’s first community solar project for Portland General Electric customers. Currently, OSU buys some of the power from the array, and the remaining is purchased by a local church, synagogue, and area residents, including low-income households who receive the power at a 50% discount. The partnership between OCPC and OSU has been so successful that OCPC is in the process of developing two more sites for OSU’s agrivoltaic research in the state.

Melon crop area being monitored for detailed data collection. 

Although the Oregon Agrivoltaic Research Facility is only in its first year of operation, extensive studies are already underway onsite. By the end of fall 2023, a study on soil compaction from installation will be complete, as well as an investigation into soil health in bare ground versus agrivoltaic spaces. OSU is also investing in long-term research, with a 20-year study on pollinators beginning in fall 2023. More extensive soil-quality projects will also start in the fall, looking to determine how an agrisolar system impacts soil health markers over 20 or more years. Sheep will graze on the site for part of the year, allowing for research on seasonal forage and sheep nutrition.  

Dr. Chad Higgins and Follow the Sun tour attendees behind Argonne National Lab’s wildlife monitoring camera. 

Nestled in the center of the array is a grassy row with a camera set at one end, seemingly at odds with the rows of plants surrounding it. This unassuming row is actually the location of two important studies, one focused on wildlife and the other on grass growth as a proxy for crop productivity. Argonne National Laboratory monitors the camera for wildlife that wander into the array, concentrating specifically on observing how the bird population interacts with the solar array. The grass is just one of several plots around the world included in an ongoing study by the United Nations, which is dedicated to predicting how certain crops will grow in a given environment. NWREC is home to another one of these plots, located outside of the array, and OSU team will analyze how the two onsite plots compare. This will give them insight into how a number of crops are likely to grow within the array without having to actually cultivate each plant.  

In September 2023, the AgriSolar Clearinghouse’s Follow the Sun tour had the opportunity to join Dr. Higgins in Oregon and see the OSU team’s crop research in action. The researchers chose to grow their crops using a technique called “dry farming,” which relies on soil moisture and rainfall to water the plants rather than irrigation. Agrivoltaics pairs particularly well with dry farming because the shade from the solar panels significantly reduces soil moisture loss. Several varieties of squash, tomatoes, melons, hemp, and hydrangeas were successfully growing between the panels, and plans to add blueberries in the coming months were on the docket, as well. More than 75 people signed up to attend the tour and had the opportunity to listen to Dr. Higgins discuss the research facility, scalability of the project, financial considerations, and initial observations of the plants growing within the array.  

The Oregon Agrivoltaic Research Facility’s commitment to embracing dual-use agriculture is truly inspiring. In addition to the research already in progress, there is an entire row of panels dedicated to experiential learning, the development of lesson plans, and opportunities for students. OSU’s clear investment in both current and future leaders in the agrisolar world leaves little doubt that the site will become a major contributor to the ever-growing body of agrivoltaic knowledge. 

Hemp plants (left) and delicata squash (right) growing within the array. 

Photo credit: NCAT

A

The aim of this study was to assess the effects via carbon isotopic composition in grains, as well as the grain yield of winter wheat in an agrivoltaic system in Southwest Germany.

Vines growing among solar arrays. Photo: NCAT

By Brian Naughton, Co-Founder Circle Two, LLC. This article was first published in the NM Healthy Soil blog.

The sun provides abundant energy here in New Mexico, something I’ve appreciated professionally and personally since moving here ten years ago to work on renewable energy. The sun can also be a bit much at times as seen in my rather disappointing tomato patch this year. I’ve always enjoyed gardening as a hobby, but a few years ago I decided to step things up a bit by volunteering at the Rio Grande Community Farm located on the Los Poblanos Open Space in the North Valley of Albuquerque. I’ve learned so much from the community that gathers and works there about every aspect of growing food from soil health, irrigation methods, tools from small to big, and climate-controlled greenhouses to the changing climate of the open field.

One of my first days volunteering at the farm I noticed a stack of solar panels in the barn and began to brainstorm ways my renewable energy background and interest in growing food might work together. In the course of my research I came across the term agrisolar. Agrisolar, or agrivoltaics as it is sometimes called, is simply the co-location of solar power production with appropriate agricultural land use. This definition comes from the National Center for Appropriate Technology (NCAT), hosts of the AgriSolar Clearinghouse, a website for all stakeholders who are interested in finding trusted agrisolar information, funding sources, events, and more. 

As I’ve learned, there are multiple potential benefits of pairing solar and agriculture. As interest in both renewable energy and sustainable agriculture grows, agrisolar has the potential to meet both needs. The benefits include producing food, conserving ecosystems, creating renewable energy, increasing pollinator habitat, and maximizing farm revenue. In our arid Southwest landscape, researchers at the University of Arizona have found the microenvironment among the solar panels can increase humidity, decrease daytime temperatures, and increase nighttime temperatures, all of which can increase the efficiency of crop production and solar electricity generation in a symbiotic relationship.

Tomatoes growing in an agrivoltaic setting. Photo: NCAT

I find the broader connections between energy and food quite interesting and important. Sunlight is the primary energy source that keeps our living ecosystem, and our human gizmos, moving. Plants absorb the daily flows of sunlight to convert carbon dioxide in the air into biomass above and below ground. Our human systems largely do the opposite, combusting stocks of solar energy in the form of fossil fuels in the ground and turning them into carbon dioxide in the air, with all the resulting impacts we’ve come to know too well. Our domesticated crops turn out, perhaps unsurprisingly, to be a bit of a mix of energy sources.

Researchers at the University of Michigan have compiled data from multiple sources to produce some eye-opening infographics on energy use in the US food system. The biggest takeaway for me is that on average it requires 14 times the energy inputs for each calorie we consume, and the majority of that input is still fossil fuels. Perhaps agrisolar projects can help shift that statistic towards something more sustainable, but there are some knowledge gaps about how best to deploy this technology.

Agrisolar in New Mexico

One of the six soil health principles promoted by New Mexico Healthy Soil and others is to know your context. This applies equally well to agrisolar projects and the need for location-specific knowledge. While some agrisolar knowledge and practice is universal, much of it is location-specific. Fortunately, there are a few nascent efforts in New Mexico beginning to explore agrisolar applications and develop best practices for our state. I’ve chosen a few to highlight that I’m aware of, but I’m sure there are many more people and organizations that are experimenting with this approach that I have not yet learned of. 

New Mexico State University

Researchers at New Mexico State University just completed their first year investigating New Mexico green chile production under partial agrivoltaics shading at the Leyendecker Plant Science Research Center near Las Cruces. Drs. Marisa Thompson, Stephanie Walker, Olga Lavrova, and Israel Joukhadar lead the project that is supported by the New Mexico Department of Agriculture’s Specialty Crop Block Grant program. Mariela Estrada is a graduate student on the project helping to coordinate the field trial and gather data, which is currently being analyzed. The project is exploring the effects of integrating solar panels into vegetable production fields, with a particular focus on the impact on disease, plant growth, and overall yield. This innovative integration of technology into agricultural fields has the potential to offer dual benefit to New Mexico producers, protecting their crops from the region’s hot and arid climate while simultaneously generating additional income through renewable energy production. The researchers are considering additional crops they could study in the coming years.

Chiles growing on an agrisolar research site at New Mexico State University. Photo: Israel Joukhadar

USDA Agricultural Research Service

Another agrivoltaics research project in the Las Cruces area is being led by the USDA’s Agricultural Research Service. Brandon Bestelmeyer from the Range Management Research location and Derek Whitelock from the Southwest Cotton Ginning Research Laboratory are collaborating on a project titled “Sustainable Multi-functional Agricultural and Energy Systems for Arid Environments.” The project aims to develop optimized agrivoltaic designs for rangeland, crops, and processing facilities and to build accompanying decision support tools including economic and life-cycle assessments so farmers and ranchers can make informed decisions about their operations. The project will be a highly collaborative effort engaging with multiple stakeholders. University partners will support experiments in photovoltaic installations exploring crop and soil types common to Southwestern ecosystems at agricultural research centers and postharvest processors. Government agencies and agricultural stakeholders managing land on which renewable energy is being developed are also envisioned as project partners. The project just kicked off in 2023 and will begin by defining knowledge gaps about potential agrivoltaic co-benefits and challenges to determine priorities for subsequent research in the region.

Los Alamos National Laboratory

One of the first agrivoltaics projects I learned about was in the El Rito area led by Los Alamos National Laboratory researcher Sanna Sevanto to support Trollworks, a biochar production equipment manufacturer located in Santa Clara, NM. Funded through the New Mexico Small Business Assistance Program, the researchers tested the effects of biochar on plant growth in an agrivoltaics setting at the solar installation located at Northern New Mexico College’s El Rito campus. Growth and productivity of tomato and Swiss chard was compared on plots where originally non-arable soil was amended to crop growth by incorporating compost and a compost-biochar mixture to the original soil under and next to the solar panels (see photo). The 1.5-megawatt solar installation itself was constructed in 2019 under a partnership between Northern New Mexico College, Kit Carson Electric Cooperative (KCEC), and Guzman Energy. The array helps to transition not only the college, but also the entire KCEC membership and communities west of the Rio Grande served by KCEC toward achieving 100% daytime solar power.

SunShare

Community solar offers a particularly exciting opportunity for agrivoltaics in New Mexico. Signed into law in 2021, the program administrator awarded the first 200 megawatts of capacity to multiple solar developers to construct projects up to 5 megawatts each that will offer subscriptions to customers of the three investor-owned utilities in the state. One of those developers is SunShare, a developer of community solar installations founded in 2011. In addition to providing workforce development opportunities, lease payments to local landowners, and electric bill discounts to low-income subscribers, SunShare will be working with New Mexico Healthy Soil Working Group to incorporate agrivoltaic design concepts into their New Mexico projects. SunShare already has some demonstrated experience with agrisolar on a project in Minnesota working with local farmers on vegetable production and an apiary located within the solar panel rows (see Minnesota Farm Guide: Agrivoltaics—Solar plus farm production is gaining ground).

Sandia National Laboratories

The final agrivoltaics project I’d like to highlight is from a diverse team led by Dr. Ken Armijo at Sandia National Laboratories with partners at SkySun, University of New Mexico, Jemez Mountain Electric Cooperative, Rio Grande Community Farm, and my own company, Circle Two. The project started this fall and will explore a novel solar technology developed by Skysun and Sandia over the next two years including laboratory testing at Sandia, field testing at Rio Grande Community Farm and assessing the commercial potential within the Jemez Mountain Electric Cooperative service area. The unique design of the photovoltaic system (see image) will allow improved crop cultivation access with tractors and personnel along with more efficient operations and maintenance over commercially available fixed-framed agrivoltaics installations. The agrivoltaics system will be connected to a battery storage and control system forming a microgrid to power on-site loads including an electric tractor and irrigation pumps. This project brings my agrivoltaics journey full circle starting with that stack of solar panels in the barn and now exploring the potential benefits of combining solar energy and crops in the field at the nearby fields at Rio Grande Community Farm.

Click here to view the original post and photos on the New Mexico Healthy Soil blog.

P

This study discusses the development of a wood-based PV vertical racking design, created to help overcome cost barriers present with commercially available vertical racks. This design is constructed with domestic renewable and sustainable materials, buildable by the average farmer, has a 25-year lifetime that aligns with most PV warranties, and follows Canadian building codes to weather high wind speeds and heavy snow loads.

Chile plants within shade of photovoltaic panels (right) and chile plants cultivated in full sun (left). 

Written for the AgriSolar Clearinghouse by Israel Joukhadar and Stephanie Walker, New Mexico State University  

New Mexico has tremendous potential in solar energy production thanks to its consistently sunny weather and high levels of solar irradiance. Presently, the state’s solar market holds a value of $3.2 billion with significant room for expansion. As stakeholders express increasing interest, they are discovering a trend observed in several other states: some of the most favorable locations for extensive solar developments are within agricultural production fields. The concept of integrating photovoltaic (PV) panels into these fields, known as agrivoltaics, has gathered attention and investment. 

Chile (Capsicum annuum L.) holds significant importance as a vegetable crop in New Mexico. Chile was initially brought to New Mexico more than 400 years ago and it has been continuously cultivated throughout the state since that time. Its cultivation and trade hold immense cultural importance to New Mexico, while simultaneously contributing to the state’s economy by providing income and employment to farmers and through supporting industries. Producers in the state harvest both red and green crops. Green fruit are full size, but physiologically immature, while red fruit are physiologically mature. The question of “Red or Green?” is the official state question, symbolizing the preference for either red or green chile and showcasing cultural attachment to this beloved crop.    

New Mexico State University is home to the longest running chile pepper breeding and genetics program in the world. This initiative traces its roots back to 1888, when it was initiated at the New Mexico College of Agricultural and Mechanic Arts, the precursor to NMSU, under the guidance of Fabián García, the first director of the Agriculture Experiment Station. Dr. García embarked on a journey of breeding and selection that eventually led to the development of New Mexico pod-type chile, which is now globally recognized as New Mexico type (NM) or Hatch chile. Over the course of its existence, the NMSU chile breeding program has introduced more than 50 distinct chile varieties.   

New Mexico is the largest chile producer in the US; however, since peak production in the early 1990s, there has been a reduction in acreage. The decline was the result of various factors including labor shortages, increased international competition, and heightened disease pressure. Increasingly, heat stress and irrigation availability are adversely impacting the crop. To protect and sustain NM chile production, it is imperative to implement a multifaceted approach to address various challenges encountered by producers throughout the production and post-harvest processes. More than a decade ago, research scientists at NMSU initiated efforts to develop mechanized harvesting solutions, aiming to alleviate the challenges posed by labor shortages. Now, those very research scientists are joining the agrivoltaics research movement. Their goal is to address additional challenges faced by NM chile producers. They are exploring co-location of PV panels within agricultural fields as a potential strategy to address certain challenges. Thanks to a grant from the New Mexico Department of Agriculture awarded to Drs. Thompson, Walker, and Lavrova, research has begun in evaluating how solar panel shading affects the movement of beet leafhoppers. These leafhoppers are vectors for the Beet Curly Top Virus (BCTV), a significant disease impacting the state’s signature chile pepper crops.  

Infection with BCTV results in various symptoms including stunted growth, curling and twisting of leaves, and the production of small unmarketable fruit. The specific symptoms may vary based on the plant’s growth stage when it becomes infected. Previous research has shown that beet leafhoppers tend to avoid shaded areas and exhibit peak activity between 10 am and 2 pm. The concept was to leverage the shade provided by solar panels as a means of deterring beet leafhoppers with the goal of reducing the incidence rate of the BCTV while not adversely impacting yields of chile peppers grown under the PV panels. This research was conducted at NMSU’s Leyendecker Plant Science Research Center, located near Las Cruces, NM. Before the first season, four fixed PV panels were installed, adhering to low-impact installation guidelines to minimize land disturbance. The panels were facing east. Although this is not the most efficient orientation for energy generation, it was ideal to shade the chile between 10 am to 2 pm. Then ‘NuMex Odyssey,’ a green chile variety developed for mechanical harvest, was transplanted into the field in the beginning of May and harvested in mid-August 2023. After completing the initial field season, many valuable insights were gained that will be useful for interested NM stakeholders. Preliminary results indicate potential yield and BCTV prevention benefits to chile plants cultivated under the shade of PV panels, but a second year of data is necessary to draw more specific conclusions. 

Romaine lettuce harvested from partially shaded area under photovoltaic panels

Danise Coon, Mariela Estrada, Isaac Medrano, and Jannatul Afroze (left to right), measuring harvested lettuce. 

Traditionally, chile is cultivated within a crop rotation strategy to mitigate soil-borne diseases. To mimic this rotation cycle, romaine lettuce (Lactuca sativa) was planted immediately after the chile crop in the beginning of September and harvested by the end of October 2023. During this transition, the orientation of the solar panels was modified from an east-facing direction to a south-facing one. The shift in panel orientation served two primary purposes: 1) During the chile growing season, shading between 10 am and 2 pm was essential to deter beetleaf hoppers. As the crop changed to romaine lettuce, this shade was no longer necessary and 2) With the advent of cooler mornings in September and October, increasing the morning sunlight became imperative to warm the plants effectively. This transition prompted a crucial consideration in the fundamental objective of each agrivoltaics site. Should it aim to maximize energy generation or crop production?  

Our present objectives include conducting a repeat of both these studies next year and sharing research outcomes with the public. Alongside our ongoing research, we are actively pursuing funding to broaden our investigations. This expansion will encompass flavor and nutrient analysis of the crops, various vegetable types and varieties, optimal irrigation designs, as well as further explorations into pest and diseases with agrivoltaic systems in New Mexico.  

Photos courtesy of Israel Joukhadar.