This best practices report includes many orchardvoltaic case studies in Europe, including: Albers raspberry farm in the Netherlands, strawberry greenhouses in France, citrus fruit and aromatic herbs grown in PV greenhouses in France as well as land regeneration and an animal husbandry agrisolar project in Hauet-Garonne, France. These projects presented in this report can be useful in the development of similar agrisolar projects in the future.

This AgriSolar Best Practices Guide is intended to assist farmers, PV developers, regulators, and other stakeholders in developing high quality Agrisolar projects. The guide provides Best Practices for Agri-PV systems, PV on agricultural buildings, and open-field applications. Also included in this guide are discussions of trends and innovations in the AgriSolar community. This guide defines the key actions required of all parties involved in project development to maximize the sustainability of Agrisolar projects, from an agronomical, ecological, and financial perspective.

This guide is a compilation of energy and water efficiency, renewable energy, and resilience best practices at United States Forest Service (USFS) nurseries and seed-extractory facilities. This guide could serve as a tool for aiding agrivoltaic operations that include these types of plants and nurseries.

The vulnerabilities of food, energy and water systems to projected climatic change make building resilience in renewable energy and food production a fundamental challenge. Researchers investigate a novel approach to solve this problem by creating a hybrid of collocated agriculture and solar photovoltaic (PV) infrastructure. They took an integrative approach—monitoring microclimatic conditions, PV panel temperature, soil moisture and irrigation water use, plant ecophysiological function and plant biomass production within this ‘agrivoltaics’ ecosystem and in traditional PV installations and agricultural settings to quantify trade-offs. They found that shading by the PV panels provides multiple additive and synergistic benefits, including reduced plant drought stress, greater food production and reduced PV panel heat stress. This study represents the first experimental and empirical examination of the potential for an agrivoltaic system to positively impact each component of the food–energy–water nexus. The results from a dryland system indicate a reduction in daytime temperatures of the solar panels (energy) and microclimate under the panels (food), and a dampening in the diurnal fluctuations of each and day-to-day fluctuations in soil moisture in irrigated agriculture (water). Together, our findings suggest that a dryland agrivoltaic system may be a resilient energy and food system that has reduced vulnerabilities to future climate variability. However, there are probable barriers to wider adoption, which include challenges associated with some forms of mechanized farming and harvest and the additional costs associated with elevating PV arrays to allow for food production in the understorey. An integrated approach to the physical and social dimensions of our food and energy systems is key in supporting decision making regarding PV development and sustainable food and energy production in a changing world

This report investigates east/west (E/W) faced vertical bifacial panel structure for AV farming and show that this could provide a much better spatial homogeneity for daily sunlight distribution relative to the fixed tilt N/S faced PV structure implying a better suitability for monoculture cropping.