Tag Archive for: Agrivoltaics

American Farmland Trust Announces Guidebook and Workshops for Solar Leasing 

American Farmland Trust, a stakeholder in the AgriSolar Clearinghouse, has announced they will offer virtual and in-person workshops designed to help ranchland and farmland owners understand the emerging solar-development field. 

“Solar energy development is accelerating rapidly in our region, and what we’re seeing is that farmland and rangeland owners are on the frontlines of this trend,” says Addie Candib, AFT Pacific Northwest Regional Director. “Many communities are wrestling with the question of whether – and where – solar should be built, but at some point, it will be up to the individual landowner to decide what’s in the long-term best interests for their business and their families. That’s what this project is about – helping farmers and ranchers to make informed decisions about the future of their land.” – American Farmland Trust 

Pair of Community Solar Bills Passes in Maryland 

“The Maryland legislature has taken steps towards strengthening its ongoing community solar pilot program, passing a pair of bills targeted at increasing the amount of eligible projects, and increasing the incentive for such projects to be developed. HB 1039 and HB 440 create tax incentives for the development of agrivoltaic community solar projects which serve low- and moderate-income customers on rooftops, brownfields, landfills, and clean fills, as well as increasing maximum project capacity to 5 MW. The bills both build on regulatory action from 2021, which expanded the program to allow community solar to power the equivalent of an additional 6,840 Maryland homes, while also allowing community solar projects to be built on clean-fill construction sites, transforming previously unusable industrial locations into clean solar energy generation sites.” – PV Magazine 

Australian Solar Park will Host Crops in New AgriSolar Program 

“Italy’s Enel will launch an experimental agrivoltaics program at its 34 MW Cohuna Solar Farm in the Australian state of Victoria to help formulate a ‘best practices’ template for utility-scale solar PV sites in other countries. Enel Green Power Australia, a subsidiary of Italian energy giant Enel, will explore how to combine solar PV generation and agricultural production in a new research program to be undertaken at its Cohuna Solar Farm in northern Victoria. Much of the land near the Cohuna Solar Farm is home to sheep grazing operations. While ‘solar grazing’ is proving to be a popular form of land co-use for large-scale solar, other forms of agrivoltaics are emerging that support horticulture, viticulture, aquaculture and even cropping activities.” – PV Magazine 

Pastureland: Solar Panels and Sheep 

“Grazing by sheep and other livestock joins other dual uses: planting groundcover to benefit pollinators, growing marketable plants such as cherry tomatoes and lavender under the panels, installing beehives, and maximizing soil health practices to improve the land for later ag use. The use of solar sites for livestock grazing is still in its infancy, but flocks of sheep are already grazing contentedly under and around glass panels in Pennsylvania, Virginia, Maryland, and New York. By welcoming the grazers, solar operators save money on land maintenance. After the cost of leasing the land, vegetation management is often their top expense.” – Bay Journal 

Solar Panels Increase Australian Grazing Quality During Drought 

“Two agrivoltaic installations in New South Wales, Australia, are being credited with increasing the quantity and quality of fleece in sheep grazing at the facilities during a drought. Research has indicated that the partial shade offered by solar panels creates a microclimate that reduces evaporation and significantly boosts the production of vegetation in arid climates. Researchers found that areas that were partially or fully covered by solar panels increased their biomass production by 90%.” – PV Magazine 

Silicon Ranch’s Regenerative Energy Program  

“Silicon Ranch founded a branch of its company dedicated to regenerative land management practices nearly four years ago and has found that a forward-looking, natural approach to solar project planning is proving fruitful in the long term. To address degraded soils and topsoil regeneration, Regenerative Energy gathers a seed mix of grasses native to that respective region and re-seeds the site. Given the length of the solar development process, seeds are ideally sown at least one year ahead of construction. Newly rooted plants will reintroduce stability to that soil.” – Solar Power World 

By: Mariah Rogers, Graduate Student, University of Arizona

Do plants taste different under solar panels? Do they taste better? At the Biosphere 2 Agrivoltaics Learning Lab, we studied just that.

Why Should We Use Agrivoltaics?

Agrivoltaics—the production of agriculture and solar photovoltaic energy on the same parcel of land—is gaining attention as farmers are facing new struggles amid the climate crisis. With agrivoltaics, farmers can reduce water consumption, produce renewable energy, and continue to cultivate their land. However, there is skepticism toward growing crops under solar panels, as farmers may have to change the types of plants that are more shade tolerant.

The Biosphere 2 Agrivoltaics Learning Lab

At the Biosphere 2 Agrivoltaics Learning Lab (B2AVSLL), we study the microclimate—that localized environment under the solar panels— and how plant adaptations occur in the shade of the agrivoltaic system. Some of the adaptations that plants make in the agrivoltaic microclimates include differences in yield, changes to plant morphology (leaf size, fruit shape and color), and alterations in metabolites. These adaptations may cause differences in how people perceive these crops. To study these differences, we grow a slew of different crops underneath solar panels.

We grow tomatoes, basil, potatoes, beans, squash, and lavender, just to name a few. While some of the plants grown at B2AVSLL are heat tolerant, crops grown in this region of the U.S. still require a lot of water. With agrivoltaics, we can reduce water consumption and still have a good yield. So, it is in our best interest to figure out if they would be successful both for the environment and in the market.

The Study Goals

To understand how these crops would do in the market, we conducted a consumer sensory study at the University of Arizona. The three goals of the study were to: (1) to understand if people perceived a difference between agrivoltaic-grown crops vs. crops grown in full sunlight (control); (2) determine if people preferred agrivoltaic-grown crops compared to control; and (3) discover if people were willing to pay more for crops grown in agrivoltaic conditions.

A total of 105 people participated in the study. Panelists were subjected to different conditions and samples, based on the site and the day they were tasting samples. Tomato and basil, potato and bean, and potato and squash were tasted by panelists.

Does Agrivoltaics Change the Flavor of Plants?

To understand if there was a difference between agrivoltaic- and control-grown samples, we used a triangle test where participants were given three samples with a random three-digit code; two of the samples were the same and one was different. We then asked the participants to pick which sample was the “odd one out.”

So, did agrivoltaics change the flavor of the crops? Yes and no. Tomato, bean, and squash samples (all fruits) were perceived as different by tasters. Basil and potato samples were not perceived as significantly different by tasters.

Does Agrivoltaics Make Plants Taste Better?

To understand if there was a preference between samples from the two growth conditions, we then conducted a paired preference test. We gave tasters two samples with random three-digit codes and asked if they preferred one sample more than another, or if they preferred neither sample.

Unsurprisingly, the results were mixed. People significantly preferred beans grown in the control setting over those grown in agrivoltaics. In addition, agrivoltaic-grown basil, potato, and squash samples were preferred by tasters.

Are People Willing to Pay More for Agrivoltaic-grown Produce?

After the triangle and preference tests, we asked participants if they would be willing to pay more or less for their favorite samples. Overall, we found that participants were willing to pay the same or more for all samples after they knew that their favorite samples were grown in agrivoltaic systems.

What Does This Mean for Farmers and Investors?

Because consumers can’t tell a significant difference in vegetable samples, and they preferred basil, potato, and squash, it may be in farmers’ best interest to grow these crops, especially in the desert. By marketing the produce as grown under solar arrays, and educating consumers about agrivoltaics, farmers may be able to sell their produce for slightly more at farmers markets.

What Does This Mean for You as a Consumers?

Buying for foods that are grown using agrivoltaics means supporting solar energy generation through purchasing fruits or vegetables. If you already go to the farmers market to buy fruits and vegetables, you may want to consider buying agrivoltaic-grown produce. If you want something that tastes like what you already buy from the farmers market, then you may want to buy vegetables. If you are looking for a different tasting product, you may want to buy fruits grown under agrivoltaics. You can be the judge whether you prefer one growth condition over another.

This report discusses the main principles of different tuning approaches in customizable photovoltaic designs and provides an overview of relevant concepts of tunable SC technologies. The report provides a systematic analysis addressing photovoltaic materials, electrode layers, optical structures, substrates and encapsulates. Also included is a summary of integrations of cutting-edge tunable PV adapted to versatile applications, current challenges, and insightful perspectives into potential future opportunities for tunable PV systems.

Sheep grazing under solar panels in Australia’s South Wales has resulted in an increase in the quantity and quality of wool, says a report from ABC Rural. Local graziers are calling it a “win-win” situation. 

Grazier Graeme Ostini says his farm is now cutting “an amazing amount of wool.” And due to condensation from the solar panels, the sheep are able to graze almost entirely through the (Australian) drought years, says the report.  

Former grazier and farmer Tom Warren leases a portion of his land to a solar farm on which250 sheep graze under solar panels. Since leasing his land, his income has increased and the carrying capacity of his land has increased nearly 25%.  

“It’ll be because of the conditions the sheep are living in. It’s relatively clean, without burrs, without dust. There’s very, very little contamination of the wool and they’re protected from the sun as well,” said Warren. 

Madeline Taylor, energy policy and landholder rights researcher, said, “We’re starting to get a really good database of studies showing how the co-location of agriculture and photovoltaics can be done successfully. We’ve seen that it works really well for grazing. Now, believe it or not, cropping can also really work very well alongside solar energy,” according to ABC Rural. 

Agrisolar Will Continue on Former Australian Coal Plant Site

“The national CEFC and Octopus Australia said earlier this month that their joint venture (JV) is developing a 1.5GW renewable energy hub to help replace Victoria’s soon-to-retire Yallourn coal power plant. The pair said they will jointly develop Blind Creek Solar and Battery Project in Bungendore, New South Wales. The goal of Blind Creek is that it will co-locate renewable energy generation with regenerative agriculture and carbon sequestration. Sheep grazing will continue to take place on the site.”  – Energy Storage News

Clean Energy Could see Floating Solar Panels as the Next Big Thing

“Floating solar is still a new way of approaching solar power compared to the land-based panels we’re used to, but it appears to have a lot of potential in areas where land for solar farms is scarce or there is simply an abundance of water. The more solar we install, on the ground, on rooftops or even on the seas, the less we’ll be reliant on fossil fuels.” Popular Science

New England PV Plant Will Study Solar Impact on Biodiversity

“The University of New England’s own 3.2MW solar farm is proving its worth in more ways than one, not only as an independent renewable energy source for the university, but also as the setting of a pilot study to better understand the impact of large-scale solar on biodiversity. The study aims to learn whether solar plants are useful habitats for wildlife and if simple land management strategies during construction could better cater to native species.” – PV Magazine

Arnprior Solar site in fall and winter
All photos courtesy of EDF Renewables

EDF Renewables (EDFR) has dedicated its efforts for over 35 years to create a sustainable energy economy.  They have developed nearly 24 GW and continue to manage nearly 13 GW of wind and solar energy generating projects in North America.  Among these renewable energy sites is the Arnprior solar project located in Ottawa, Ontario, Canada. Arnprior is a 23.4MW array that sits on nearly 180 acres and provides enough power to meet the peak energy demands of around 7000 homes. When completed in 2009 the array doubled the solar PV energy generating capacity of the entire country of Canada. Six years after construction was completed, one of the landowners, Diane Egan, expressed an interest to EDFR on how the site would be returned to agricultural land after decommissioning.

Beehives at Arnprior

In 2015, the asset management team at EDFR started by curtailing the use of herbicides and pesticides, but they didn’t stop there on biodiverse and environmental projects at the site. By 2016, with all of the news coverage of decreasing bee populations, the team reached out to Marianne and Matt Gee of Gees Bees Honey Company to install hives at Arnprior. They started by installing two hives at the site that produced nearly 100 jars of honey per year. In 2022, there are now five hives that produce over 300 jars of honey annually.

Monarch larvae at Arnprior

In July of 2017, EDFR was awarded by the Government of Canada to provide a complete habitat for the monarch butterfly. The Arnprior site was the first of any solar project in Canada to be awarded by the Habitat Stewardship Program for Species at Risk (HSP SAR). EDFR formed a partnership with Victoria Wojcik and Kathleen Law of Pollinator Partnership, the worlds largest pollinator focused non-profit organization, to begin planting native wild flowers and milkweed. After a targeted seeding plan and professional training program, milkweed began to grow and thrive. Milkweed is the exclusive host plant that monarch larvae feed on. Within only one month of the award the larvae and iconic butterflies began to appear.

Chris Moore, Lyndsey Smith, and Bunny of Shady Creek Lamb Company

Furthermore in 2017, the Arnprior site launched a pilot program to use sheep grazing for vegetation management. Chris Moore and partner Lyndsey Smith of Shady Creek Lamb Company brought 50 ewes to manage the growth of the vegetation around the panels. EDFR found that not only did sheep grazing the vegetation under the solar panels align with vegetation management needs, but it also provided a mutually beneficial and effective solution for local sheep farmers interested in expanding their flock without having to buy or rent additional land.  Shady Creek Lamb Co. now had an opportunity to be paid for grazing.  Now in 2022, after lambing on-site, 500 sheep can be seen roaming around from spring to fall.  Shady Creek Lamb Co. has benefitted from dual-use by having access to additional land allowing them to expand their flock, grow their business and produce grass fed free range lamb and fiber for local markets.

Overall, the implementation of apiaries, monarch habitats and sheep grazing at the Arnprior site help to conserve farmland and promote healthy ecosystem biodiversity.  The site continues to maintain and expand the biodiversity projects exemplifying dual-use/agrivoltaics as a win-win solution for EDFR, the solar and agricultural communities and businesses being supplied by the honey, lamb, wool and electricity.

An ewe enjoys the shade of the solar array.
The flock is unaffected by the solar array

Timing field management in and around solar fields to optimize conservation opportunities for declining grassland birds

Dr. Amy Johnson, Conservation Biologist and Program Director, Virginia Working Landscapes, Smithsonian’s National Zoo and Conservation Biology Institute

Biodiversity is declining globally at an alarming rate. While multiple ecosystems are at risk, our planet’s terrestrial grasslands are suffering precipitous losses. In North America, less than 1% of native grasslands remain.

As a result, species that rely on grassland habitat are in trouble. A recent study published in Science revealed that grassland birds are declining more than any other group of birds (Rosenberg et al, 2019; Figure 1). These are species that rely on contiguous open spaces, mostly free from trees, for nesting, foraging, and survival.

Figure 1. Grassland birds have declined more than any group of birds in North America. Infographic: Cornell Lab of Ornithology

In the eastern United States, the majority of grassland habitat is under private ownership. Much of these grasslands are working lands, with hay production and grazing being the most common land uses. A growing number of these working lands are also contributing to an expanding network of solar fields, often integrating solar infrastructure into actively farmed or post-agricultural fields. Simultaneously, these eastern grasslands are host to some of North America’s most vulnerable grassland birds, including Eastern meadowlarks, Grasshopper sparrows, and Bobolinks, which have experienced population declines of 75%, 68%, and 65%, respectively, since the 1970s. As such, it is critical that we prioritize research to better understand how these populations are impacted by grassland management. More importantly, in order to be successful in developing effective conservation strategies for these species on working lands, it’s necessary to facilitate a model that considers the needs of both wildlife and people.

In Virginia, a team of conservation scientists is collaborating with community partners and a network of private landowners and producers to conduct research on grassland birds on working lands. Virginia Working Landscapes (VWL) is a program of Smithsonian’s National Zoo and Conservation Biology Institute, and its mission is to promote the conservation of native biodiversity and sustainable land management through scientific research, education, and community engagement. Since 2010, VWL has recruited over 180 properties (totaling over 80,000 acres) that have provided researchers access for the purpose of conducting ecological research on how land management impacts biodiversity. Grasslands included in this research include fallow post-agricultural fields, solar fields, active hayfields, and livestock pastures, restored native grasslands and wildflower meadows. From this, VWL researchers have been able to assess how bird communities respond to different land management practices, including the timing of management, and have been able to apply these findings to best management practices that support grassland bird populations.

Solar is quickly emerging as one of the Virginia’s leading sources of renewable energy, with more arrays being constructed every year. With the majority of these installations occurring in and around agricultural fields, we often think about the impacts that solar may have on grassland bird communities. While there’s been minimal research on this topic (Horváth et al., 2009; DeVault et al., 2014), there are several organizations actively looking into it (see SUNY New Paltz, Virginia Pollinator Smart, Grassland Bird Trust).

One aspect of solar management that hasn’t been discussed in great detail in scientific literature is vegetation management in solar fields specific to grass and shrubland birds. With much of VWL’s research focusing on field management (not to mention the fact that it’s currently peak mowing season here in Virginia!), I wanted to use this as an opportunity to share some insights on how landowners and managers can optimize grassland management for bird communities within solar fields and beyond.

In eastern grasslands specifically, we have identified two distinct communities of birds nesting in grasslands. One we identify as grassland obligates, which include those birds that nest directly on the ground in open grasslands, including species like Eastern meadowlarks, Bobolinks, and Grasshopper sparrows. Others we refer to more commonly as shrubland birds, which often build their nests off the ground in low-lying vegetation amongst the branches of woody shrubs or weaved through the stems of sturdy wildflowers. Examples of these species include Indigo buntings, Field sparrows, and Prairie warblers. Depending on the composition and structure of the vegetation growing in and around your solar fields, it’s possible that both groups of these birds are nesting amongst solar arrays and surrounding habitat. For example, if a solar array is installed in conjunction with a pollinator wildflower mix, it may be likely that shrubland species are nesting nearby. VWL research is demonstrating that wildflower meadows support significantly higher densities of shrubland birds than fallow or agricultural fields. In contrast, arrays surrounded by fescue pasture and/or hay grasses it may be more likely to have higher densities of grassland obligates present, potentially nesting directly on the ground. Therefore, the composition of the vegetation surrounding your solar array could help determine the optimal time for field management based on the nesting phenology of the species most associated with that habitat.

In Virginia, Eastern meadowlarks start nesting as early as April 15, with peak nesting activity occurring in mid- to late May (Figure 2). Bobolinks follow shortly behind with peak nesting activity occurring in early June. Unfortunately, this is also the most popular time for field management, especially if fields are managed for hay and/or grazing, and this can have drastic negative impacts on grassland bird survival. For example, a New York study showed that hay harvests during peak nesting season resulted in 94% mortality of eggs and nestlings of grassland birds (Bollinger et al.,1990). Other species more commonly associated with wildflower meadows, like Blue grosbeaks and Field sparrows will nest into late June/early July. As such, it is important to consider the species using your fields when scheduling field management activities. For this reason, we created a “Field Management Risk Calendar” (Figure 3) to help guide managers on the optimal times to manage fields for the benefit of birds.

Figure 2. An Eastern meadowlark nest hidden amongst hay grasses at the edge of a solar field in Fauquier County, VA. Photos: Amy Johnson
Figure 3. Field management risk calendar for eastern grassland birds in the mid-Atlantic. Infographic: Amy Johnson, Smithsonian’s Virginia Working Landscapes, using data collected in Virginia grasslands.

As the calendar illustrates, delaying field management from mid-June to July 1 can make a significant difference for the survival of nestling grassland birds. Delaying to July 15 or even August 1 is even more impactful, especially for those late-nesting shrubland species. We also recognize, however, that delaying management isn’t always feasible. As such, we are currently collaborating with farmers in Virginia to identify optimal windows for early field management that will still offer opportunities for birds to fledge their young. For example, is it possible to mow early in the season, prior to peak grassland bird nesting, and still provide the necessary vegetation structure for nesting birds in late May and into June? Stay tuned to www.VAWorkingLandscapes.org to hear more as we continue collecting data on this front. In the meantime, I encourage you to refer to our Field Management Guidelines for Grassland Birds to learn more about the species that use our eastern grasslands and how we can adapt our management regimes to optimize their conservation.


References

Bollinger, E.K., P.B. Bollinger, and T.A. Gavin, . 1990. Effects of Hay-Cropping on Eastern Populations of the Bobolink. Wildlife Society Bulletin, 18(2): 142-150.

DeVault, T.L., T.W. Seamans,, J.A. Schmidt., J.L. Belant,, B.F. Blackwell, N. Mooers, L.A. Tyson, and L. Van Pelt. 2014. Bird use of solar photovoltaic installations at US airports: Implications for aviation safety. Landscape and Urban Planning,122: 122-128.

Horvath, G., G. Kriska, P. MalikB. . and Robertson. 2009. Polarized Light Pollution: A New Kind of Ecological Photopollution. Frontiers in Ecology and the Environment, 7: 317-325.

Rosenberg, K.V., A.M. Dokter, P.J. Blancher, J.R. Sauer,, A.C. Smith, P.A. Smith, J.C. Stanton, A. Panjabi, L. Helft, M. Parr, and P. Marra. 2019. Decline of the North American avifauna. Science, 366: 120-124.

Australian Guide to Agrisolar for Large-scale Solar Published by Clean Energy Council 

“As interest grows in agrisolar – using land for both agriculture and solar power – the Clean Energy Council has produced the Australian Guide to Agrisolar for Large-scale Solar to assist proponents of utility-scale solar and the landholders and farmers who work with them to integrate agricultural activities into solar farm projects.” – Renewable Energy Magazine 

Agrisolar: Solar Industry Hopes Farmers Will Help Solve Grid Access Problems  

“The Clean Energy Council says working with Australian farmers could help solve the growing problem of grid access for new large-scale solar farms, in a new paper promoting ‘agrisolar’” If done right, the paper argues solar farms can improve both grazing and crop land, while allowing solar farms to be built in areas where the electricity network is strong, providing a win-win for both solar developers and farmers.” – Renew Economy 

Dairies Powered By the Sun and Batteries: Trans-Tasman AgriSolar Start-up Gathers Pace 

“A New Zealand-based start-up offering dairy farmers cheap and reliable solar and battery-backed power purchase contracts has raised $4 million from an Australian-led investment round. Based in Christchurch, Solagri installs solar and batteries on dairy farms in the Canterbury region of New Zealand at no up-front cost, instead signing the farmers up to long-term PPAs guaranteed to supply 100% of their dairy sheds’ electricity needs.” – One Step off the Grid 

By: Andrew Valainis

Director, Montana Renewable Energy Association (MREA)

According to the Solar Energy Industries Association, the cost to install solar has dropped more than 60% over the last decade alone, with the average residential system costing half of what it did in 2010.[1] Still, solar photovoltaic systems are a large investment, and the up-front cost can be challenging for many Americans. In this blog post, I will explore some of the financing and financial incentive options available to help pay for these systems. I use Montana’s available options as examples, though financing and incentive programs will vary state to state.

One of the most popular and most important incentives in the U.S. is the Solar Investment Tax Credit (ITC). The ITC is a federal income tax credit that you can claim against the cost of the installation. This credit applies to the total cost of the installation, including labor. If you decide to install a storage system at the same time as the solar system, then you can include that cost as well. There is no upper dollar limit on how much the credit is worth. The ITC was originally set at 30% but stepped down to 26% in 2020 and will continue to step down over the next few years. In 2020, the phase-out schedule was extended for two years as part of the spending bill that Congress negotiated. The ITC will remain at 26% until 2023, when it will step down to 22% for all customers. In 2024, it will expire for individuals, while stepping down permanently to 10% for businesses.

Federal ITC Step Down 2020 Extension.

Another great option is the U.S. Department of Agriculture’s “Rural Energy for American Program” (REAP). The REAP program provides grants – not loans – to qualifying agricultural and small businesses for up to 25% of the cost of a renewable energy project, up to $500,000. Energy efficiency grants and loan guarantees are also available through the program. This is an excellent option for agricultural producers. USDA has local offices all around the country, and I highly recommend calling them to ask about the program and how you can benefit.

In 2022, Congress passed the Infrastructure Investment and Jobs Act (IIJA), which provides a large amount of funding for the installation of renewable energy technologies. Details are still coming out about several of the different funding opportunities, which may apply to businesses or individuals. These are worth monitoring for further information. You can learn more here.

Some states offer state-level programs specifically supporting the development of solar and other renewable energy technologies. In Montana, we have the Alternative Energy Revolving Loan Program (AERLP). This program was established by the Montana Legislature in 2001 and provides zero-down, low-interest loans of up to $40,000 to individuals, small businesses, nonprofit organizations, and government entities in order to increase investments in alternative energy systems and energy conservation measures in Montana. The program, managed by the Montana Department of Environmental Quality’s Energy Office, has financed more than 500 renewable energy installations across the state since its first loan in 2003. States also often offer tax incentives or rebates for renewable energy installations, which are great options to help lower the up-front cost of the installation. Reach out to your state energy office or solar advocacy group to ask what options your state offers.

Property Assessed Clean Energy (PACE) programs are becoming more popular across the country. PACE programs offer the opportunity to finance the up-front cost of an installation and then pay back that cost as an assessment on the property taxes of the building or location where the system was installed. One of the greatest benefits is that the cost of the system is tied to the location, making for a simpler process if there is a change in ownership. The nuances of these programs are important and will vary from state to state. For example, the recently adopted PACE program in Montana is only available to commercial entities.

Your utility may offer discounts, rebates, or other incentives that can help with the cost of renewable energy and/or energy efficiency technologies. In Montana, we have the Universal Systems Benefits (USB) program. Our largest investor-owned utility, NorthWestern Energy, administers this state-authorized incentive program through its “E+ Renewable Energy Program” to qualifying non-profit organizations, government agencies, and schools in NorthWestern Energy’s Montana service territory. Projects receiving these funds often provide civic value, including education and visible representation of renewable energy technologies to a broad audience. The Montana USB program provides grants, but other utility territories may offer programs with discounts or rebates on certain energy efficiency products. Reach out to your energy provider to ask what incentives it offers. 

Private financial institutions are beginning to offer their own renewable-energy focused products. For example, Clearwater Credit Union (based in Missoula, MT) offers two home energy loans: an unsecured, easy-access Home Solar Loan; and a Home Energy Efficiency Loan. Because it is a private institution (and not a state agency), the credit union can usually offer a decision in minutes. These options can be particularly attractive for businesses or households that already have an account with that institution.

Third-party financing is another option to consider. In this scenario, a private, third-party financer will develop a solar project on leased or purchased land or roof space. The financer provides the capital and, in doing so, is often able to take advantage of tax breaks that can lower the overall project cost. They enter into a contract with the system host (i.e., the building or land owner) who then benefits from the project by receiving the energy produced on-site. The host may pay the financer a regular payment (fixed or otherwise) related to the value of the energy delivered. At the end of the contract term, the host may also have an option to purchase the system from the financer. The crux is finding a third-party financer you are comfortable working with. These types of contracts can be technical, and the nuances are very important. If you are interested in this model, I recommend working with a legal expert to make sure you understand the terms and conditions of any agreement that you sign. Missoula County recently worked on the first third-party financed system in Montana. MREA hosted a webinar about the experience, and about third-party financing in general. A link to the recording is provided below.

A closing note on tax incentives (generally): Be sure to consult with a tax professional to ensure that these options are available to you. Unless the tax credit is specifically noted as refundable, you must have a sufficient tax liability to claim the value of the credit. For example, the Federal ITC is not currently refundable (though SEIA and other solar advocates have lobbied Congress to make it so).

As you can see, there are varied options available to help with the cost of a solar installation. However, the nuances are important and can drive the cost and savings that you will eventually realize. As you explore these different options, be sure to reach out to local solar advocates and legal and tax experts in your area with any clarifying questions.

Resources:

Federal ITC (for businesses)

Federal ITC (for residences)

USDA REAP Program

IIJA funding opportunities

MREA webinar on Third-Party Financing

Montana-specific Programs and Examples:

MREA website on financing and incentives

Alternative Energy Revolving Loan Program

Clearwater Credit Union energy loans

Northwestern Energy E+ Renewable Incentives


[1] Solar Energy Industries Association. (2022). “Solar Industry Research Data.” https://www.seia.org/solar-industry-research-data