Tag Archive for: soil microclimate

Land use change is a major driver of soils’ properties variation and potential degradation. Solar photovoltaic plants installed on the ground represent a key to mitigating global climate change and greenhouse gas emissions. However, it could represent an emerging source of land consumption, although reversible, which prevents the use of soils for agricultural purposes and may affect crucial ecosystems services. Despite the large widespread deployment of photovoltaic plants, their potential effect on soil properties has been poorly investigated. The aim of this study was to assess changes of soil physical, chemical and biochemical properties seven years after the installation of the panels. For this purpose, the soil under photovoltaic panels was compared with the GAP area between the panels’ arrays and with an adjacent soil not affected by the plant. The main results showed that seven years of soil coverage modified soil fertility with the significant reduction of water holding capacity and soil temperature, while electrical conductivity (EC) and pH increased. Additionally, under the panels soil organic matter was dramatically reduced (-61% and -50% for TOC and TN, respectively compared to GAP area) inducing a parallel decrease of microbial activity assessed either as respiration or enzymatic activities. As for the effect of land use change, the installation of the power plant induced significant changes in soils’ physical, chemical and biochemical properties creating a striped pattern that may require some time to recover the necessary homogeneity of soil properties but shouldn’t compromise the future re-conversion to agricultural land use after power plant decommissioning.


This paper shows that agrivoltaic systems allow us to reach sustainable food and electricity goals with high land-use efficiency. The study shows the yield, antioxidant capacity, and secondary metabolite of broccoli and electricity production were analyzed under an agrivoltaic system over three cultivation periods. The study also reports that agrivoltaic with additional shading treatment produced greener broccoli with a higher level of consumer preference than open-field grown ones.



This paper describes results of crop outputs for certain vegetables with differing gap spaces between rows to determine optimal crop production. It addresses nutrient levels, soil water content, and plant temperature below the panels. 

Increasing energy demands and the drive towards low carbon (C) energy sources has prompted a rapid increase in ground-mounted solar parks across the world. This represents a significant global land use change with implications for the hosting ecosystems that are poorly understood. In order to investigate the effects of a typical solar park on the microclimate and ecosystem processes, we measured soil and air microclimate, vegetation and greenhouse gas emissions for twelve months under photovoltaic (PV) arrays, in gaps between PV arrays and in control areas at a UK solar park sited on species-rich grassland. Our results show that the PV arrays caused seasonal and diurnal variation in air and soil microclimate. Specifically, during the summer we observed cooling, of up to 5.2 °C, and drying under the PV arrays compared with gap and control areas. In contrast, during the winter gap areas were up to 1.7 °C cooler compared with under the PV arrays and control areas. Further, the diurnal variation in both temperature and humidity during the summer was reduced under the PV arrays. We found microclimate and vegetation management explained differences in the above ground plant biomass and species diversity, with both lower under the PV arrays. Photosynthesis and net ecosystem exchange in spring and winter were also lower under the PV arrays, explained by microclimate, soil and vegetation metrics. These data are a starting point to develop understanding of the effects of solar parks in other climates, and provide evidence to support the optimisation of solar park design and management to maximise the delivery of ecosystem services from this growing land use.

Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. Land use change for land-based renewables (LBR) is global, widespread and predicted to increase. Understanding of microclimatic effects is growing, but currently incomplete, and subsequent effects on plant–soil C cycling, greenhouse gas (GHG) emissions and soil C stocks are unknown. We urge the scientific community to embrace this research area and work across disciplines, including plant–soil ecology, terrestrial biogeochemistry and atmospheric science, to ensure we are on the path to truly sustainable energy provision.