This report describes a solar-powered pneumatic grain/seed cleaning system. The report stats that a solar powered pneumatic grain/seed cleaning system was developed with specific functional, structural and operational design parameters. The developed pneumatic cleaner was tested for garden pea, bottle gourd, sponge gourd and radish seed lots of different impurity levels. It was found that the processed lot achieved more than 99% physical purity irrespective of type of seed and impurity levels and the cleaning efficiency of the system was more than 96%.

This report describes the design and use of  a solar-powered fruit and vegetable grader. This study demonstrates one of the innovative, agricultural engineering features that can be potentially used in the context of various agrisolar operations that include crops.

This report describes a low-cost, solar-powered, air-inflated grain dryer. Moisture levels measured during harvest and storage can fluctuate based on the design and efficiency of grain dryers. These solar-powered grain dryers have been shown to be effective in optimizing the moisture levels during the harvest process. These innovative technologies can possibly be used in various contexts of agrisolar operations that include crops.

This report describes the design and construction of a solar photovoltaic food dryer. The hybrid solar-energy dryer uses PV panels to power the heating element coil and charging battery which includes a storage energy system used to study drying behavior. Solar-powered dryers could be effective technologies to use in future agrisolar operations that include grain or other crops.