Tag Archive for: AgriSolar

This study shows that adding semitransparent organic solar cells (ST-OSCs) to a greenhouse structure enables simultaneous plant cultivation and electricity generation, thereby reducing the greenhouse energy demand. To lower the energy footprint of greenhouses, there has been growing interest in integrating solar cells onto the greenhouse structure. In this approach, a portion of light is captured by the solar cells to generate power, while the remaining light transmits into the greenhouse for crop production. The results of this study can benefit development of agrivoltaic operations by maximizing the amount of sunlight reaching plants grown in greenhouses.

This article aims to demonstrate the viability of a greenhouse that integrates, as a novelty, semi-transparent amorphous silicon photovoltaic (PV) glass (a-Si), covering the entire roof surface and the main sides of the greenhouse.

This study introduces a novel algorithm to estimate the accumulated global radiation inside photovoltaic (PV) greenhouses at desired time intervals. These features have been considered in the design of agrivoltaic systems, which integrate energy and food production on the same land unit. The PV greenhouse achieves this goal by integrating the PV panels on the roof. This is useful especially in locations where the land resource is limited.

This study reviews and analyzes the technological and spatial design options that have become available to date implementing a rigorous, comprehensive analysis based on the most updated knowledge in the field, and proposes a thorough methodology based on design and performance parameters that enable us to define the main attributes of the system from a trans-disciplinary perspective. Agrivoltaic systems have been the subject of numerous studies due to their potential in the food–energy nexus. Demonstrative projects with new conceptual designs based on PV modules for covering open fields have shown promising results through optimizing light availability while reducing the need for irrigation and protecting from extreme weather phenomena.

This study addresses spherical micro-cells that are a semi-transparent photovoltaic (PV) technology which can contribute to improve the sustainability of greenhouse systems. The prototype STM is promising for greenhouse roof applications and its performance can be improved by increasing the conversion efficiency. Results of the study show that the balance of the light distribution for plant growth and electricity production should be designed carefully according to the nature of the light requirements of cultivated plants in the greenhouse.

The purpose of this study is to present the potentiality of an innovative prototype photovoltaic greenhouse with variable shading to optimize energy production by photovoltaic panels and agricultural production. The results show how the shading variation enabled regulation of the internal radiation, choosing the minimum value of necessary radiation, because the internal micro-climatic parameters must be compatible with the needs of the plant species grown in the greenhouses. In agrivoltaic systems, these considerations could be useful in optimization of the operations identified in this study.

In an effort to help to improve the returns of farming in an environmentally acceptable way, the project’s objective is to In an effort to help to improve the returns of farming in an environmentally acceptable way, the project’s objective is to investigate the feasibility of a small size electric farming tractor, which shall be able to use locally generated renewable energy. The project’s aim is to evaluate the feasibility of an electric micro tractor system for small-scale family farming that can be propelled by locally generated renewable energy. These applications could be applied in agrivoltaic developments, which include producing renewable energy and crops.

This paper discusses solar-powered agricultural tools in India. Some of the tools used for agrivoltaic operations discussed in this paper are water-pumping systems, solar dryers, solar greenhouses and solar electric fences. The paper also states that agrivoltaic tools require less maintenance than the tools used in producing conventional energy tools.

The aim of this study is to present a potential, alternative solution regarding the covering of energy needs, required for farming activities related to the arable lands. This paper elaborates on the energy balance between solar-energy generation and the demands of the farming activities in the field. The main parts of this concept are, the solar array scheme, the electric motor of the tractor and of course the battery that will store the energy from panels and produce it to farming tractor, while operating in the field.

In this paper, a novel UGV (unmanned ground vehicle) for precision agriculture, named “Agri.q,” is presented. The Agri.q has a multiple degrees of freedom positioning mechanism and it is equipped with a robotic arm and vision sensors, which allow to challenge irregular terrains and to perform precision field operations with perception.